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Abstract. We consider the problem of extremal scattered data interpo-
lation in R3. Using our previous work on minimum L2-norm interpolation
curve networks, we construct a bivariate interpolant F with the following
properties:

(i) F is G1-continuous,
(ii) F consists of triangular Bézier surfaces,
(iii) each Bézier surface satisfies the tetra-harmonic equation ∆4F = 0.

Hence F is an extremum to the corresponding energy functional.

We also discuss the case of convex scattered data in R3.

1 Introduction

Scattered data interpolation is a fundamental problem in approximation the-
ory and finds applications in various areas including geology, meteorology, car-
tography, medicine, computer graphics, geometric modeling, etc. Different meth-
ods for solving this problem were applied and reported, excellent surveys can be
found in [4,5,6,7].

The problem can be formulated as follows: Given scattered data (xi, yi, zi)
∈ R3, i = 1, . . . , N , that is points Vi = (xi, yi) are different and non-collinear,
find a bivariate function F defined in a certain domain D containing points Vi,
such that F possesses continuous partial derivatives up to a given order and
F (xi, yi) = zi. One of the possible approaches to solving the problem is due to
Nielson [8]. The method consists of the following three steps:

Step 1. Triangulation. Construct a triangulation T of Vi, i = 1, . . . N .

Step 2.Minimum norm network (MNN). The interpolant F and its first order
partial derivatives are defined on the edges of T so as to satisfy an extremal
property. The MNN is a cubic curve network, i. e. on every edge of T it is a
cubic polynomial.

Step 3. Interpolation surface. The obtained network is extended to F by an
appropriate blending method. The interpolant F is a rational function on every
triangle of T .

In [1] Andersson et al. pay special attention to the second step of the above
method - the construction of the MNN. Using a different approach, the authors
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give a new proof of Nielson’s result. Their approach allows to consider and handle
the case where the data are convex and we seek a convex interpolant. Andersson
et al. formulate the corresponding extremal constrained interpolation problem of
finding a MNN that is convex along the edges of the triangulation. The extremal
network is characterized as a solution of a nonlinear system of equations. The
authors propose a Newton-type algorithm for solving this type of systems. The
validity and convergence of the algorithm were studied further in [11].

In this paper we focus on Step 3 of the discussed approach. Since the MNN is
a polynomial curve network it is natural to require that the interpolant F also is
a polynomial on every triangle of T . Although the MNN is C1-continuous at the
vertices of T , it is preferable and more appropriate to require G1-continuity for
the interpolant instead of C1-continuity since the latter is parametrization de-
pendent. Two surfaces with a common boundary curve are called G1-continuous
if they have a continuously varying tangent plane along that boundary curve.

Let D be the union of all triangles in T . For simplicity we assume that D
contains no holes. For given data and the corresponding MNN we construct an
interpolation surface F (u, v) defined on D with the following properties:

(i) F consists of triangular Bézier surfaces (patches) defined on each triangle of
T ;

(ii) F is G1-continuous;
(iii) F satisfies the tetra-harmonic equation ∆4x = 0 a.e. for (u, v) ∈ D, where

∆ = ∂2

∂u2 +
∂2

∂v2 is the Laplace operator. Hence F is a solution to the extremal
problem

min
F

∫
D

∥∆4F∥2dudv (1)

i.e. F is an extremum to the corresponding energy functional.

We also consider the constrained interpolation problem. In this case, despite
that the MNN is edge convex, in general it is not globally convex. Therefore a
convex interpolation surface may not exist. We propose the following approach.
We modify if necessary the edge convex MNN to obtain an edge convex polyno-
mial curve network with the same tangent planes at the vertices of T . Then we
construct a G1-continuous interpolation surface F̂ (u, v) still satisfying (iii).

The paper is organized as follows: In Section 2 we introduce the notation
and present some related results from [1]. In Section 3 we investigate the G1-
continuity conditions for adjacent Bézier patches and prove that they correctly
apply to our problem. The construction of surface F is considered in Section 4.
In the final Section 5 we briefly discuss the constrained interpolation problem.

2 Preliminaries

Let N ≥ 3 be an integer and (xi, yi, zi), i = 1, . . . , N be given scattered data.
Points Vi := (xi, yi) are the projection points of the data onto the plane Oxy.
A triangulation T of points Vi is a collection of non-overlapping, non-degenerate
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closed triangles in Oxy such that the set of the vertices of the triangles coincides
with the set of points Vi. For a given triangulation T there is a unique continuous
function L : D → R1 that is linear inside each of the triangles of T and inter-
polates the data. Scattered data in D are convex if there exists a triangulation
T of Vi such that the corresponding function L is convex. The data are strictly
convex if they are convex and the gradient of L has a jump discontinuity across
each edge inside D.

The set of the edges of the triangles in T is denoted by E. If there is an edge
between Vi and Vj in E, it will be referred to by eij or simply by e if no ambiguity
arises. A curve network is a collection of real-valued univariate functions {fe}e∈E

defined on the edges in E. With any real-valued bivariate function F defined on
D we naturally associate the curve network defined as the restriction of F on
the edges in E, i.e. for e = eij ∈ E,

fe(t) := F

(
(1− t

∥e∥
)xi +

t

∥e∥
xj , (1− t

∥e∥
)yi +

t

∥e∥
yj

)
,

(2)

where 0 ≤ t ≤ ∥e∥, and ∥e∥ =
√

(xi − xj)2 + (yi − yj)2.

Furthermore, according to the context F will denote either a real-valued
bivariate function or a curve network defined by (2). We introduce the following
class of functions defined on D

F := {F (x, y) | F (xi, yi) = zi, i = 1, . . . , N, ∂F/∂x, ∂F/∂y ∈ C(D),

f ′
e ∈ AC[0,∥e∥], f

′′
e ∈ L2

[0,∥e∥], e ∈ E}

and the corresponding classes of smooth interpolation curve networks

C(E) :=
{
F|E = {fe}e∈E | F (x, y) ∈ F , e ∈ E

}
and smooth interpolation edge convex curve networks

Ĉ(E) :=
{
F|E = {fe}e∈E | F (x, y) ∈ F , f ′′

e ≥ 0, e ∈ E
}
.

For F ∈ {C(E), Ĉ(E)} we denote the curve network of second derivatives of F
by F ′′ := {f ′′

e }e∈E . The L2-norm of F ′′ is defined by

∥F ′′∥L2(T ) := ∥F ′′∥ =

(∑
e∈E

∫ ∥e∥

0

|f ′′
e (t)|2dt

)1/2

.

We consider the following two extremal problems.

(P) Find F ∗ ∈ C(E) such that ∥F ∗′′∥ = inf
F∈C(E)

∥F ′′∥,

(P̂) Find F̂ ∗ ∈ Ĉ(E) such that ∥F̂ ∗′′∥ = inf
F∈Ĉ(E)

∥F ′′∥.

In [1,8] it has been shown that (P) and (P̂) for strictly convex data have
unique solutions.
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3 The G1-continuity conditions

3.1 Control points that are next to a boundary curve

Let C1 and C2 be cubic triangular Bézier patches with a common boundary
which is cubic polynomial q(t). Let q(t) =

∑3
i=0 qiB

3
i (t) where qi, i = 0, . . . , 3

are the control points of q(t), and Bn
i (t) are the Bernstein polynomials of degree

n, n ∈ N, defined for 0 ≤ t ≤ 1 as follows:

Bn
i (t) :=

(
n

i

)
ti(1− t)n−i,

(
n

i

)
=

{ n!
i!(n−i)! if 0 ≤ i ≤ n,

0 otherwise.

Let pi and ri, i = 0, . . . , 3 are next to the boundary control points of C1 and
C2, respectively. Let us degree elevate q(t) to quartic polynomial and denote the
degree elevated control points by q̂i, i = 0, . . . , 4, where q̂0 ≡ q0 and q̂4 ≡ q3.
Then q(t) =

∑4
i=0 q̂iB

4
i (t) where

q̂i =
i

4
qi−1 +

(
1− i

4

)
qi, i = 0, . . . , 4. (3)

Farin [3] proposed the following sufficient conditions for G1-continuity between
C1 and C2.

i

4
di,4 +

(
1− i

4

)
di,0 = 0, i = 0, . . . , 4, where (4)

di,0 = α0pi + (1− α0)ri − (β0q̂i + (1− β0)q̂i+1) ,
di,4 = α1pi−1 + (1− α1)ri−1 − (β1q̂i−1 + (1− β1)q̂i) ,

and 0 < αi < 1, i = 1, 2. Next we shall prove that system (4) always has a
solution. From (4) for i = 0 and i = 4 we obtain

d0,0 = 0 ⇒ α0p0 + (1− α0)r0 = β0q̂0 + (1− β0)q̂1, (5)

d4,4 = 0 ⇒ α1p3 + (1− α1)r3 = β1q̂3 + (1− β1)q̂4 (6)

The points q̂0, q̂1, p0, and r0 are coplanar since they lie on the tangent plane
at q̂0, see Fig. 2(a). Hence α0 and β0 are uniquely determined from (5) by
the intersection point of the diagonals of the planar quadrilateral q̂0r0q̂1p0.
Note that the quadrilateral could be non-convex and in this case either β0 > 1,
or β0 < 0. Analogously, α1 and β1 are uniquely determined by (6). Therefore
system (4) has three equations and four unknowns p1, r1,p2, r2 as follows.∣∣∣∣∣∣

α0p1 + (1− α0)r1 = c1
α1p1 + (1− α1)r1+ α0p2 + (1− α0)r2 = c2

α1p2 + (1− α1)r2 = c3

, (7)
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where

c1 := β0q̂1 + (1− β0)q̂2 − 1
3 (α1p0 + (1− α1)r0 − β1q̂0 − (1− β1)q̂1),

c2 := β0q̂2 + (1− β0)q̂3 + β1q̂1 + (1− β1)q̂2,

c3 := β1q̂2 + (1− β1)q̂3 − 1
3 (α0p3 + (1− α0)r3 − β0q̂3 − (1− β0)q̂4).

(8)

We shall prove the following

Lemma 1. System (7) always has a solution.

Proof. If α0 ̸= α1 then the rank of matrix M of system (7) is 3 and the system
always has a solution. If α0 = α1 we have

0 = c1 − c2 + c3 =
1

3
(β1 − β0)

4∑
i=0

(−1)i
(
4

i

)
q̂i. (9)

Thus rank(M)=2 and the system is compatible if and only if the right-hand side
of (9) is zero. This holds obviously for β0 = β1. If β0 ̸= β1 we use (3) and obtain
consecutively

4∑
i=0

(−1)i
(
4
i

)
q̂i =

4∑
i=1

(−1)i
(
4
i

)
i
4qi−1 +

3∑
i=0

(−1)i
(
4
i

)
4−i
4 qi

=
4∑

i=1

(−1)i
(

3
i−1

)
qi−1 +

3∑
i=0

(−1)i
(
3
i

)
qi

=
3∑

i=0

(−1)i+1
(
3
i

)
qi +

3∑
i=0

(−1)i
(
3
i

)
qi = 0.

⊓⊔

3.2 The vertex enclosure problem

t1

t4

t2

t3

q0

q̂1
1

q̂2
1

q̂3
1

q̂4
1

Fig. 1. The vertex enclosure problem:
points ti, i = 1, . . . , 4 must satisfy a
linear system of equations

Let q0 be an inner vertex in T with
degq0 = n where the degree is the num-
ber of the edges incident to q0. For k =
1, . . . , n let Qk be the quartic Bézier
patches with common vertex q0; q

k(t) =∑4
i=0 q̂

k
iB

4
i (t) be the degree elevated cu-

bic curves of the MNN emanating from q0

with the corresponding αk
i , β

k
i , i = 0, 1;

and tk be next to q0 inner control point
ofQk, see Fig. 1 for n = 4. We apply (5) to
Qk and obtain the following linear system
for the unknowns tk,

1− α2
0 α2

0 . . . 0 0
0 1− α3

0 α3
0 . . . 0

...
0 0 . . . 1− αn

0 αn
0

α1
0 0 . . . 0 1− α1

0




t1
t2
...

tn−1

tn

 =


s1
s2
...
sn−1

sn,

 , (10)
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where

si = βi+1
0 q̂i+1

1 + (1− βi+1
0 )q̂i+1

2 − 1
3 (α

i+1
1 q̂i+2

1 + (1− αi+1
1 )q̂i

1

−βi+1
1 q̂0 − (1− βi+1

1 )q̂i+1
1 ), i = 1, . . . , n− 2,

sn−1 = βn
0 q̂

n
1 + (1− βn

0 )q̂
n
2 − 1

3 (α
n
1 q̂

1
1 + (1− αn

1 )q̂
n−1
1 − βn

1 q̂0 − (1− βn
1 )q̂

n
1 ),

sn = β1
0 q̂

1
1 + (1− β1

0)q̂
1
2 − 1

3 (α
1
1q̂

2
1 + (1− α1

1)q̂
n
1 − β1

1 q̂0 − (1− β1
1)q̂

1
1).

The determinant of (10) is

Det = (−1)n+1α1
0α

2
0 . . . α

n
0 + (1− α1

0)(1− α2
0) . . . (1− αn

0 ).

It can be verified that
(1− α1

0)(1− α2
0) . . . (1− αn

0 )

α1
0α

2
0 . . . α

n
0

= 1 and therefore we have

Det =

{
2α1

0α
2
0 . . . α

n
0 , n odd

0, n even
. The latter implies

Lemma 2. The rank of the matrix of system (10) is

{
n, n odd,
n− 1, n even.

Therefore if n is odd then system (10) always has a solution, and if n is even
then (10) could be incompatible and may not have a solution. The existence of
a solution to system (10) is known as the vertex enclosure problem, see [10].

4 Construction of the Bézier patches

p0 p3

r0 r3

q̂0 q̂1 q̂2
q̂3 q̂4

(a) (b)

Fig. 2. Construction of the G1-continuous Bézier patches: (a) without splitting; (b)
splitting the patch into three sub-patches

In this section we show how to construct successfully G1-continuous Bézier
patches in the presence of even degree vertices. We apply procedure called split-
ting similar to the one proposed by Clough and Tocher, see [2,9]. Let T 1 denote
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the set of triangles in T that have an inner vertex of even degree. We split
all triangles in T 1. Let τ ∈ T 1. We partition τ into three new sub-triangles
with a common vertex in τ , see Fig. 2(b). This new vertex with appropriate
z-value is added to the data. In [10] it is shown that splitting leads to admissi-
ble data. Further, computing the new vertex in τ is done through computation
of control points into three sub-triangles obtaining in this way the three G1-
continuous Bézier sub-patches. Algorithm 1 below takes a triangle τ in T 1 and
degree-elevated quartic boundary control points of the corresponding patch and
computes the control points of the three G1-continuous Bézier sub-patches.

Algorithm 1: Splitting - Fig. 2(b)

Input: Degree elevated quartic boundary control points ■,• of a Bézier patch
Output: Control points of three G1 − continuous interpolating sub-patches

Step 1. Find the first layer of inner control points that are next to the boundary:
1.1 Points □ are centers of the three triangles with vertices •■•.
1.2 Then points ◦ divide segments □□ into three equal parts.

Step 2. Find the second layer of inner control points:
2.1 Points □ are centers of the three small triangles with vertices
◦□◦ from the first layer.
2.2 Then points ◦ are midpoints of segments □□.

Step 3. Find the third layer of inner control points: Three points □ are centers
of the small triangles with vertices ◦□◦ from the second layer.

Step 4. Find the last inner control point ■ as the center of the triangle with
vertices □ from the third layer.

For a triangle in T \T 1 (see Fig. 2(a)) we have α0 = α1 and β0 = β1 since the
projections of the quadrilaterals q̂0r0q̂1p0 and q̂3r3q̂4p3 onto the plane Oxy are
congruent. We compute the three inner control points marked by ×, from the
corresponding three systems (10) for each of the triangle vertices. Two of the
equations in systems (10) are the same as in system (7) for the G1-continuity
conditions. The third equation in (7) is

(α1 − α0)(r1 − p1 − r2 + p2) =
1

3
(β1 − β0)

4∑
i=0

(−1)i
(
4

i

)
q̂i.

It is automatically satisfied since α0 = α1 and the right-hand side is zero ac-
cording to the proof of Lemma 1.

Using Algorithm 1 we construct G1-continuous surface F (u, v) defined on D
which consists of triangular quartic Bézier patches and interpolates the MNN.
The next theorem states the extremal properties of F .

Theorem 1. F (u, v) satisfies the tetra-harmonic equation ∆4x = 0 for (u, v) ∈
D \E. Consequently F is a solution to the extremal problem (1) and hence F is
an extremum to the energy functional Φ(x) = 1/2

∫
D
∥∆4x∥2dudv.
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5 The constrained extremal problem

Let the given data be strictly convex. In this case F̂ ∗ on every edge is either a
convex cubic polynomial or a convex cubic spline with one knot, see [1]. If f̂∗

e is a

polynomial we do not modify it. If f̂∗
e is a spline, we slightly modify it to obtain

a convex cubic curve with the same tangents at the ends. Then, using the results
from Section 2 and Section 3 we construct G1-continuous surface F̂ defined on
D which consists of triangular quartic Bézier patches, interpolates the modified
edge convex MNN, and still satisfies Theorem 1. The main difficulty in this case
is in the algorithm for splitting since the projections of the control points onto
the corresponding edge are not equally spaced. The details will be presented in
the full version.
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