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SUMMARY

Given convex scattered data inR3 we consider the constrained interpolation problem of finding a smooth, minimal
Lp-norm (1< p < ∞) interpolation network that is convex along the edges of an associated triangulation. In
previous work the problem has been reduced to the solution of a nonlinear system of equations. In this paper we
formulate and analyse a Newton-type algorithm for solving the corresponding type of systems. The correctness
of the application of the proposed method is proved and its superlinear (in some cases quadratic) convergence is
shown. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of interpolating data in 3-dimensional Euclidean spaceR3 by smooth surfaces has various
applications in both theory and practice and has consequently received considerable attention in the last
decades, (see, for example, a survey by Böhmet al. [1]). The problem can be formulated as follows:
given a set of points ( data)(xi, yi, zi) [ R3, i = 1, . . . , n, find a bivariate functionS, defined in a
certain domainD, that possesses continuous first-order partial derivatives and such thatS(xi, yi) = zi .
In many cases, it is important that the interpolantS satisfies some additional constraints or possesses a
certain extremal property.

In Reference [2], Nielson presents an interpolation method based on the so-called minimum norm
networks. The method works in the following three steps.

(i) Triangulation. The projectionsVi := (xi, yi, 0) , i = 1, . . . , n, are used as the vertices of a
triangulation of the domainD in the plane(x, y, 0).

(ii) Minimum norm network. The interpolantS and its first-order partial derivativesSx andSy are
defined on the edges of the triangulation so as to satisfy an extremal property.

(iii) Blending. The obtained network is extended toS by an appropriate blending method.
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In Reference [3] Anderssonet al. pay special attention to the second step of the above method, i.e.
the construction of the minimum norm network. By a different approach, the authors give a new proof
of the Nielson’s result and additionally consider the case of convex data. In this case, it is natural for
the theory, and important for the practice, that the constructed interpolant inherits the convexity of the
data.

Anderssonet al. formulate the corresponding extremal constrained interpolation problem of finding
a minimumL2-norm interpolation network that is convex along the edges of the triangulation. The
convex minimumL2-norm network is characterized as a solution of a nonlinear system of equations.
The results from Reference [3] are extended in Reference [4] to the class ofLp-norms for 1< p ≤ ∞.

The problem of finding a numerical method for the solution of the corresponding non-linear systems
of equations naturally arises and its investigation is thereby desirable. In the univariate case, Andersson
and Elfving [5] proposed a Newton-type method for the solution of the corresponding constrained inter-
polation problem. Under certain conditions, the method has been shown to be correct and superlinearly
convergent.

In this paper, we apply the approach from Reference [5] and, based on results from References [3,
4], formulate a Newton-type algorithm for solving nonlinear systems that arise from the constrained
minimum Lp-norm (1 < p < ∞) interpolation problem inR3. The method has been proposed for
the casep = 2 in Reference [3] without proper investigation of its validity and convergence. Here we
prove that under certain conditions the method correctly applies to the corresponding class of nonlinear
systems and achieves superlinear ( quadratic for 1< p ≤ 2) convergence.

The paper is organized as follows: in Section 2 we introduce notation, formulate the extremal problem
of interest and present some related results from References [3,4]. We explain how the extremal problem
reduces to the solution of a nonlinear system of equations and describe its general type. In Section 3, we
formulate a Newton-type algorithm for solving this type of system and prove its validity and convergence.
Finally, in Section 4 we make concluding remarks and present some numerical experiments and results.

2. NOTATION AND RELATED RESULTS

Let n (n ≥ 3) be an integer and letPi = (xi, yi, zi), i = 1, . . . , n, be different points inR3. We call this
set of pointsdata. We assume that the projectionsVi = (xi, yi) of the data into the plane(x, y, 0) are
different. Stressing the fact thatVi are in a general position, although not necessarily irregularly placed,
we call such datascattered.

A polygonal domainD that contains all the pointsVi and has vertices at some of them is associated
with the data.D is not necessarily simple—it may contain holes.

Next, we say thatT is a triangulation of the pointsVi , i = 1, . . . , n, in D if T is a collection of
non–overlapping, non–degenerate closed trianglesTijk with verticesVi , Vj andVk. Each projection
point Vi is a vertex of at least one triangle and no vertex of a triangle lies in the interior of an edge of
another triangle. The union of all triangles is the domainD.

The set of edges of the triangles inT is denoted byE. If there is an edge between verticesVi and
Vj in E, it will be referred byeij . The edges inE define anedge networkin the domainD, which we
denote byED (or simply byE if no ambiguity arises).

For a given triangulationT , there is a unique continuous functionL : D → R1 that is linear inside
each of the triangles ofT and interpolates the data, i.e.L(Vi) = zi for i = 1, . . . , n.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:133–146



A NEWTON-TYPE ALGORITHM FOR CONSTRAINED INTERPOLATION 135

Next, we define the notion of convex scattered data in a given domainD.

Definition 2.1. Scattered data in a polygonal domainD are convex if there exists a triangulationT
of D such that the corresponding functionL is convex. The data are strictly convex if they are convex
and the gradient ofL has a jump discontinuity across each edge insideD.

There exist software packages that can test scattered data in a given domain for convexity and construct
the corresponding triangulationT . Hereafter, we shall assume that our data in a polygonal domainD

are scattered, strictly convex and thatT is the corresponding triangulation ofD from Definition 2.1.

Definition 2.2. A curve network is a collection of real-valued univariate functions
{fe}e [ E , wherefe is defined on the edgee [ E.

With any real-valued bivariate functionF defined onD, we naturally associate the curve network
defined by the restrictionF|E as follows:

fe(t) := F

((
1 − t

‖e‖
)

Vi + t

‖e‖Vj

)
= F (xe(t), ye(t)) (2.1)

where

xe(t) =
(

1 − t

‖e‖
)

xi + t

‖e‖xj , ye(t) =
(

1 − t

‖e‖
)

yi + t

‖e‖yj

0 ≤ t ≤ ‖e‖, ‖e‖ :=
√

(xi − xj )2 + (yi − yj )2, e [ E

In our presentation, according to the context,F will denote either a real-valued bivariate function or
a curve network defined by Equation(2.1). For a realp, such that 1< p < ∞, we introduce the
following class of functions defined onD:

^p := {F(x, y) | F(xi, yi) = zi, i = 1, . . . , n, ∂F/∂x, ∂F/∂y [ C(D)

f ′
e [ AC[0,‖e‖], f

′′
e [ L

p

[0,‖e‖], e [ E}

and the corresponding class of so-calledsmooth interpolation edge-convex curve networks

Cp(E) := {
F|E = {fe}[ E | F(x, y) [ ^p, f ′′

e ≥ 0, e [ E
}

For F [ Cp(E), we denote the curve network of second derivatives ofF by F ′′ := {f ′′
e }e [ E . The

Lp-norm ofF ′′ is defined by

‖F ′′‖p :=
(∫

E

|F ′′|p dt

)1/p

:=
(∑

e [ E

∫ ‖e‖

0
|f ′′

e (t)|p dt

)1/p

Now we are ready to formulate the extremal problem of finding the smooth interpolation edge-convex
curve network with minimumLp-norm second derivative that is of interest:

(Pp) FindF ∗ [ Cp(E) such that‖F ∗′′‖p = inf
F [Cp(E)

‖F ′′‖p
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The problem(Pp) has been considered in Reference [3] forp = 2 and in Reference [4] for any
p, 1 < p ≤ ∞. In both cases, it has a unique solution, which has been successfully characterized in
References [3,4]. Below we outline the approach for this characterization and formulate the main result
of Reference [4], which reduces the solution of(Pp) to the solution of a nonlinear system of equations.

The key observation is that the second derivativeF ∗′′ of the optimal curve network is always the
positive part of a curve network that is linear on each of the edges ofE. Thereby, the idea is to represent
it by simple linear curve networks calledbasic curve networks. As has been proved in Reference [3],
these basic curve networks form a basis in a subspace of linear curve networks and can be viewed as
a successful generalization of one-dimensional linearB-splines to the case of linear curve networks
defined on the edges of a given triangulation.

Recall thateij denotes the edge between projectionsVi andVj in the triangulationT . Fori = 1, . . . , n,
let mi be the number of the edges incident toVi in T . Furthermore, let{eii1, . . . , eiimi

} be the edges
incident toVi listed in clockwise order aroundVi . The first edgeeii1 is chosen so that the coefficient

λ
(s)
1,i defined below is not zero—this is always possible. Abasic curve networkBis is defined for any

pair of indicesis, such thati = 1, . . . , n ands = 1, . . . , mi − 2. The basic curve networkBis is zero
on all edges ofE excepteiis ,eiis+1 andeiis+2, where it is linear. More precisely,Bis is defined by

Bis :=




λ
(s)
r,i

(
1 − t

‖eiis+r−1‖
)

on eiis+r−1, r = 1, 2, 3,

0 ≤ t ≤ ‖eiis+r−1‖

0 on the other edges ofE

The coefficientsλ(s)
r,i , r = 1, 2, 3, are uniquely determined to sum to one and to form a zero linear

combination of the three unit vectors along the edgeseiis+r−1 starting atVi .
Note that basic curve networks are associated with points that have at least three edges incident to

them. Thus, if a point is incident to two edges only (this might happen on the boundary ofD) then no
basic curve network is associated with that point. We denote byNB the set of pairs of indicesis for
which a basic curve network is defined, i.e.

NB := {is | mi ≥ 3, i = 1, . . . , n, s = 1, . . . , mi − 2}

With each basic curve networkBis for is [ NB we associate a numberdis defined by

dis = λ
(s)
1,i

‖eiis ‖
(zis − zi) + λ

(s)
2,i

‖eiis+1‖
(zis+1 − zi) + λ

(s)
3,i

‖eiis+2‖
(zis+2 − zi)

which reflects the position of the data in the supporting set ofBis . The numbersdis possess interesting
properties and can be viewed as a generalization of the second-order divided differences in the univariate
case. For us it is important that these numbers are positive when the data are strictly convex. The next
theorem characterizes the solution of the problem(Pp).

Theorem 2.1. (Reference [4]). In the case of strictly convex data the problem(Pp) has a unique
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solutionF ∗. The second derivative of the solutionF ∗′′ is of the form

F ∗′′ =

 ∑

is [ NB

αisBis




q−1

+

where1/p + 1/q = 1, (x)+ := max(x, 0) and the coefficientsαis satisfy the following nonlinear
system of equations:

∫
E


 ∑

is [ NB

αisBis




q−1

+
Bkl dt = dkl, for kl [ NB. (2.2)

3. NEWTON-TYPE ALGORITHM

According to Theorem 2.1, the solution of the extremal constrained interpolation problem(Pp) is
reduced to the solution of the system(2.2). When the data are strictly convex, the system(2.2) always
has a solution and it is unique (see Reference [3] for the casep = 2). The proof of this result in the
case 1< p < ∞ is similar and we omit it here.

We begin this section by defining a Newton-type algorithm for the solution of the system(2.2). Next,
we prove the correctness of the presented algorithm and investigate its convergence.

Let N be the size of the system(2.2) or, which is the same, the number of basic functionsBis for
is [ NB . We denote byRN the corresponding linear vector space. It will be convenient to view the
vectors inRN as column vectors. To keep our notation from the previous section we use pairs of indices
for the elementsαis of the vectorsα [ RN . Furthermore, we assume thatNB is lexicographically
ordered and thereby

α = (α11, . . . , α1m1−2, α21, . . . , αn1, . . . , αnmn−2)
T

The same enumeration is used for the equations of the system(2.2). So, the vector on the right-hand
side of system(2.2) becomes

d = (d11, . . . , d1m1−2, d21, . . . , dn1, . . . , dnmn−2)
T

Linear combinations of basic curve networksBis that correspond to the vectorsα [ RN are denoted by

ϕ(α) :=
∑

is [ NB

αisBis

Definition 3.1. Strictly convex scattered data inR3 are degenerate if the solution of the corresponding
extremal problem(Pp) has the property that

ϕ(α∗) :=
∑

is [ NB

α∗
isBis

is zero on a whole edge of the triangulationT .
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Hereafter, we assume that our data are non-degenerate andα is in a neighbourhood of the solution
α∗.

Consider now the operator8 : RN → RN defined by

(8(α))kl =
∫

E

(ϕ(α))
q−1
+ Bkl dt (3.1)

where 1/p + 1/q = 1. Forq > 1, the integrals along the edges in definition(3.1) exist and therefore
the operator8(α) is well defined inRN . In our analysis below it will be helpful to represent the positive
part ofϕ(α) by its corresponding characteristic curve networkχ(α) defined on the edgese [ E by

χe(α) = χe(α; t) =
{

1 if ϕe(α; t) > 0

0 if ϕe(α; t) ≤ 0

whereϕe(α; t) is the restriction ofϕ(α) on e andt [ [0, ‖e‖]. Then definition(3.1) becomes

(8(α))kl =
∫

E

(ϕ(α))q−1 χ(α)Bkl dt (3.2)

In the formulation of our Newton-type algorithm for Equations(2.2) we need the Ĝateaux (weak)
derivative8′(α) of 8(α). First, assuming that8′(α) exists, we find it in an explicit form. Then we shall
prove that our computations are valid.

For any fixedα [ RN , the Ĝateaux derivative8′(α) (if it exists) is a linear continuous operator from
RN to RN . The linear operator8′(α) is anN × N matrix whose elements in our case (see Reference
[6], pp. 489–490) are given by

(
8′(α)

)
kl,is

= ∂

∂αis

(8(α))kl , where kl, is [ NB

We formally differentiate in definition(3.2) and obtain

∂

∂αis

(8(α))kl = (q − 1)

∫
E

(ϕ(α))q−2 χ(α)BklBis dt (3.3)

To verify the correctness of the differentiation we investigate the continuity with respect toα of the
functions in the integrals in Equations(3.2) and(3.3). Then we prove that for any fixedα the operator
defined by Equation(3.3) is a linear continuous operator fromRN to RN .

The functions(ϕ(α))q−1 χ(α) in the integrals in definition(3.2) and(ϕ(α))q−2 χ(α) in Equation
(3.3) for q ≥ 2 are always continuous with respect toα.‡ In the case 1< q < 2, since the data are
non-degenerate, the functions in Equation(3.3) are continuous with respect toα.

Now we fix α and consider Equation(3.3). The integrals on the edges in Equation(3.3) readily exist
in the caseq ≥ 2. In the case 1< q < 2, we observe that the restrictionϕe(α; t) is a linear function
in [0, ‖e‖]. Since the data are non-degenerate,ϕe(α; t) can have no more than one simple zero in the

‡ Note that this is true even if the data are degenerate. Letᾱ be a vector such thatϕ(ᾱ) is zero on a whole edgee [ E. Then
the characteristic functionχ(α) is not continuous in̄α but since it is bounded and in addition the restrictionϕe(ᾱ; t) ≡ 0
for t [[0, ‖e‖], then(ϕ(α))q−1 χ(α) and(ϕ(α))q−1 χ(α) for q ≥ 2 are continuous in̄α.
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interval [0, ‖e‖]. Thus, the integral

∫ ‖e‖

0
(ϕe(α; t))q−2 χe(α; t)Bkl(t)Bis(t) dt

converges. For any fixedα, the linear operator defined by Equation(3.3) is obviously bounded and
therefore continuous. Thus, the Gâteaux derivative exists for any fixedα in a neighbourhood ofα∗ and
is represented by Equation(3.3).

Now, in our notation the system(2.2) becomes

8(α) = d (3.4)

and the Newton-type algorithm for solving Equation(3.4) follows from the equation

8′(αν)(αν+1 − αν) = d − 8(αν)

whereα0 is initially chosen andαν for ν = 1, 2, . . . are consecutive approximations of the solutionα∗
of Equation(3.4). More precisely, we shall apply the following procedure.

Algorithm 3.1. (Newton-type algorithm)

Step 1. Choose an appropriate initial vectorα0 [ RN , and set an accuracy parameterε > 0.
Step 2. Forν = 0, 1, . . . find the next approximation vectorαν+1 from the following linear system

8′(αν)(αν+1 − αν) = d − 8(αν) (3.5)

Stop if‖αν+1 − αν‖ < ε.

To prove the correctness and the convergence of this algorithm, we apply a theorem from Reference
[7], which in our case states the following.

Theorem 3.1. (Reference [7]). The approximation sequence{αν}∞ν=1 is well defined and superlinearly
convergent provided

(i) The operator8′(α) continuously depends onα in a neighborhood of the solutionα∗.
(ii) The matrix8′(α∗) is invertible.
(iii) The initial vectorα0 is chosen close enough toα∗.

Additionally, the convergence is at least quadratic if

(iv) The second Ĝateaux derivative8′′(α) is bounded in a neighbourhood ofα∗.

Next until the end of the section, we verify and comment upon the validity of the conditions (i), (ii ),
and (iv).

The condition (i) follows from the continuity with respect toα of the elements of the matrix8′(α),
which has been proved already. Note that from the validity of (i) it follows that in a neighbourhood of
α∗ there exists the Fréchet (strong) derivative of8(α) and both derivatives (weak and strong) coincide.

We establish the condition (ii ) in the next lemma by showing that the matrix8′(α∗) is positive
definite.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:133–146
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Lemma 3.1. The matrix8′(α∗) is positive definite.

Proof
We shall prove thatβT8′(α∗)β ≥ 0 for anyβ [ RN . Sinceα∗ = {α∗

is}is [ NB
solves the system(2.2),

we have ∫
E


 ∑

is [ NB

α∗
isBis(t)




q−1

+
Bkl(t) dt = dkl, kl [ NB

or ∫
supp(Bkl)


 ∑

is [ NB

α∗
isBis(t)




q−1

+
Bkl(t) dt = dkl, kl [ NB (3.6)

By the definition, supp(Bkl) consists of the three edgesekl, ekl+1, ekl+2 and sincedkl > 0 for each
kl [ NB , Equation(3.6) implies

max
supp(Bkl)


 ∑

is [ NB

α∗
isBis(t)


 > 0 for kl [ NB (3.7)

Let β [ RN be an arbitrary vector. We have

βT8′(α∗)β = (q − 1)

∫
E


 ∑

is [ NB

α∗
isBis(t)




q−2

χ(α∗)


 ∑

is [ NB

βisBis(t)




2

dt (3.8)

and consequentlyβT8′(α∗)β ≥ 0.
Now, we shall prove that

βT8′(α∗)β = 0 iff β = 0 (3.9)

The sufficiency is obvious. For the necessity, we assume that, for someβ, βT8′(α∗)β = 0. From
(3.8) it follows that

χ(α∗)


 ∑

is [ NB

βisBis(t)


 = χ(α∗)ϕ(β) = 0 (3.10)

Consider an arbitrary vertexVk, 1 ≤ k ≤ n, of the triangulation and letBkl be the basic curve network
for somel, kl [ NB . From (3.7) it follows that on some of the three edgesekl , ekl+1, ekl+2, sayekl ,
there exists a subinterval(t1

kl, t
2
kl) such that the restrictionχ|(t1

kl
,t2

kl
)(α

∗) = 1. Then from(3.10) we have

that
ϕ(β) =

∑
is [ NB

βisBis(t) = 0 for every t [(t1
kl, t

2
kl)

The basic curve networksBis for is [ NB are linearly independent and thereforeβis = 0 for those pairs
is for which supp(Bis) ∩ (t1

kl, t
2
kl) 6= ∅. In particularβkl = 0 and sincekl was chosen arbitrary we have

β = 0.
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Next, we investigate the validity of (iv). Consider the second Gâteaux (weak) derivative8′′(α). For
any fixedα [ RN , 8′′(α) (if it exists) is a linear continuous operator fromRN to the space of the linear
continuous operators inRN and thus it can be considered as a bi-linear operator fromRN × RN to
RN (see Reference [6], pp. 646–652, for details). In our case,8′′(α) (if it exists) can be defined byN3

elements (
8′′(α)

)
kl,is,jm

= ∂2

∂αis∂αjm

(8(α))kl , where kl, is, jm [ NB

or by the mapping
RN × RN 3 β1 × β2 7−→ β [ RN,

where, givenβ1 andβ2, the vectorβ is defined by

βjm =
∑

kl [ NB

∑
is [ NB

∂2

∂αis∂αjm

(8(α))kl β
1
klβ

2
is (3.11)

The next lemma shows that the condition (iv) is valid in the casep ≤ 2 (i.e.q ≥ 2, since 1/p+1/q =
1).

Lemma 3.2. Letq ≥ 2. The second Ĝateaux derivative8′′(α) exists and is bounded in a neighbour-
hood of the solutionα∗.

Proof
Consider the caseq > 2 first. Foris, kl, jm [ NB from Equation(3.3) we obtain

∂2

∂αis∂αjm

(8(α))kl = ∂

∂αjm

(
8′(α)

)
kl,is

= (q − 1)(q − 2)

∫
E

(ϕ(α))q−3 χ(α)BklBisBjm dt.

(3.12)

Similar to the integrals in Equation(3.3), the integrals in Equation(3.12) readily exist forq ≥ 3. In
the case 2< q < 3, the existence is ensured by the non-degeneracy of the data and the integrals are
convergent since the restrictions ofϕ(α) on the edges ofE are linear functions. The operator defined by
Equation(3.11) is bi-linear for any fixedα [ RN . Thus, ifq > 2 the second Ĝateaux derivative8′′(α)

exists for any fixedα [ RN and is represented by Equation(3.12). Obviously8′′(α) is bounded in a
neighbourhood ofα∗.

Now, consider the caseq = 2. In this case, the formula(3.12) becomes

(
8′′(α)

)
kl,is,jm

=
∫

E

∂χ(α)

∂αjm

BklBis dt (3.13)

Let us consider again the restrictionϕe(α; t), t [[0, ‖e‖], of the functionϕ(α) on an arbitrary edge
e [ E. If ϕe(α; t) does not change its sign, then from Equation(3.13) the corresponding integral one
is zero. Otherwise,ϕe(α; t) has a simple zerot0(α) [(0, ‖e‖) for which

ϕe(α; t0(α)) = 0 and ϕ′
e(α; t0(α)) 6= 0 (3.14)

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:133–146
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Let δ(t) denote Dirac’s delta function. Although the characteristic function is not differentiable it might
be considered as a distribution and the next formal calculations could be easily verified. We have

∫ ‖e‖

0

∂χ(α)

∂αjm

BklBis dt =
∫ ‖e‖

0
δ(t − t0(α))

∂t0(α)

∂αjm

BklBis dt (3.15)

We find the derivative∂t0(α)/∂αjm from (3.14) by differentiation:

0 = ∂ϕe(α; t0(α))

∂αjm

= Bjm(t0(α)) + ϕ′
e(α; t0(α))

∂t0(α)

∂αjm

and after a substitution in Equation(3.15) we obtain

(
8′′(α)

)
kl,is,jm

= − Bjm(t0(α))

ϕ′(α; t0(α))

∫ ‖e‖

0
δ(t − t0(α))BklBis dt

= − Bjm(t0(α))

ϕ′(α; t0(α))
Bkl(t0(α))Bis(t0(α))

The last expression is a bounded function ofα in a neighbourhood of the solutionα∗.
The edgee was chosen arbitrary and thus, in the caseq = 2, the derivative8′′(α) exists for any fixed

α and is bounded in a neighbourhood of the solutionα∗.

Finally, we summarize our results. For non-degenerate data, the algorithm based on Equation(3.5)

is well defined and we can construct a sequence of vectors

α0, α1, . . . , αν, . . . (3.16)

for which the following theorem applies.

Theorem 3.2. If the given data are non-degenerate and the initial vectorα0 is appropriately chosen,
then the sequence(3.16) converges to the solutionα∗ of the system(3.4)and the corresponding sequence
of curve networks(ϕ(αν))

q−1
+ converges to the second derivative of the solution of (Pp), 1 < p < ∞.

The convergence is at least quadratic in the case1 < p ≤ 2 and superlinear otherwise.

The results in this section have been obtained by applying and adopting the approach and analysis
proposed in Reference [5]. The authors there, among others, considered the problem (Pp) for functions
defined on a one-dimensional interval and proved a result analogous to Theorem 3.2 in the univariate
case.

4. NUMERICAL RESULTS

In this section, we report briefly the results of some experiments done with Algorithm 3.2 above. We have
considered scattered convex data generated from convex bivariate functions with Delaunay or regular
triangulation associated with the projection points. The solution of the corresponding nonlinear system
(2.2) has been approximated by a sequenceα1, α2, . . . computed by iterations(3.5). The particular
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calculations can be simplified by observing that

(
8(αν)

)
kl

=
∫

E


 ∑

is [ NB

αν
isBis




q−1

+
Bkl dt

=
∫

E


 ∑

is [ NB

αν
isBis




q−2

+


 ∑

is [ NB

αν
isBis


Bkl dt

=
∑

is [ NB

αν
is

∫
E


 ∑

is [ NB

αν
isBis




q−2

+
BisBkl dt

= 1

q − 1

(
8′(αν)αν

)
kl

Thus, we have 8(αν) = (1/(q − 1))8′(αν)αν and the system(3.5) becomes

8′(αν)αν+1 = d + (q − 2)8(αν) (4.1)

The formula(4.1) is particularly simple in the casep = q = 2 and here we deal with this case only.
It becomes

8′(αν)αν+1 = d

which in our notation is

∫
E


 ∑

is [ NB

αν
isBis(t)




0

+


 ∑

is [ NB

αν+1
is Bis(t)


Bkl(t) dt = dkl, kl [ NB

To choose an initial approximation vectorα0 we use the related unconstrained minimumL2-norm
interpolation problem:

(P̃2) Find F ∗ [ C̃2(E) such that‖F ∗′′‖2 = inf
F [ C̃2(E)

‖F ′′‖2

where
C̃2(E) := {

F|E = {fe}e [ E | F(x, y) [ ^2
}

is the class ofsmooth interpolation curve networks(not necessarily convex along the edges ofT ). In
Reference [3] it is shown that the solution of the problem(P̃2) reduces to the solution of the following
linear system: ∑

is [ NB

αis

∫
E

Bis(t)Bkl(t) dt = dkl, kl [ NB (4.2)

So we have used as an initial approximation vectorα0 the solution of the linear system(4.2), i.e. the
solution of the unconstrained problem. Other initial approximation vectors we have tested produced
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Table I. Data 1.

i 1 2 3 4 5 6 7 8 9 10 11 12
xi 0.00 0.00 0.16 0.20 0.40 0.32 0.48 0.52 0.60 0.68 0.00 0.00
yi 0.00 1.0 0.32 0.80 0.40 0.76 0.48 0.64 0.40 0.56 0.00 1.0

i 13 14 15 16 17 18 19 20 21 22 23
xi 0.00 0.24 0.20 0.20 0.36 0.40 0.52 0.60 0.60 0.80 0.96
yi 0.60 0.04 0.60 1.0 0.56 1.0 0.52 0.08 0.80 0.20 0.60

Figure 1. Edge convex minimum norm network based on Data 1.

almost identical convergence patterns. Our experiments suggest that the method converges globally.
The program code is written in Fortran and run, in double precision arithmetic, on a PC with

standard Pentium processor. For the experiments presented here we used accuracy parameterε = 10−8.
The graphs of the edge-convex minimumL2-norm curve networks are drawn using theMathematica
2.2 package.

Below we present two of our experiments. In the first examplen = 23 and the projectionsVi of the
data are shown in Table I. The associated triangulation in this case is the Delaunay triangulation. The
heightszi are obtained from the bivariate convex function

F(x, y) = 2.5e(x−0.5)2+(y−0.5)2
((x − 0.5)2 + (y − 0.5)2)

The stopping criterion‖αν+1 − αν‖ < 10−8 was satisfied after three iterations and the 3rd and 4th
iterations were identical. The corresponding edge convex curve network is shown in Figure 1.

In the second examplen = 30 and the associated triangulation is a regular mesh with verticesVi as
shown in Table II. The heightszi are obtained from the function

F(x, y) = − ln2(16− (x − 3)2 − (y − 3
√

3/2)2)
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Table II. Data 2.

i 1 2 3 4 5 6 7 8
xi 1.5 2.5 3.5 1.0 2.0 3.0 4.0 0.5
yi 3

√
3 3

√
3 3

√
3 2.5

√
3 2.5

√
3 2.5

√
3 2.5

√
3 2

√
3

i 9 10 11 12 13 14 15 16
xi 1.5 2.5 3.5 4.5 0. 1.0 2.0 3.0
yi 2

√
3 2

√
3 2

√
3 2

√
3 1.5

√
3 1.5

√
3 1.5

√
3 1.5

√
3

i 17 18 19 20 21 22 23 24
xi 4.0 5. 1.5 1.5 3.5 4.5 0. 1.0
yi 1.5

√
3 1.5

√
3

√
3

√
3

√
3

√
3

√
3 0.5

√
3

i 25 26 27 28 29 30
xi 2.0 3.0 4.0 1.5 2.5 3.5
yi 0.5

√
3 0.5

√
3 0.5

√
3 0.0 0.0 0.0

Figure 2. Edge convex minimum norm network based on Data 2.

The stopping criterion was satisfied after three iterations and the 3rd and 4th iterations were identical.
The corresponding edge-convex minimumL2-norm curve network is shown in Figure 2.
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1. Böhm W, Farin G, Kahmann J. A survey of curve and surface methods in CAGD,Computer Aided Geometric Design
1984;1:1–60.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:133–146



146 K. VLACHKOVA

2. Nielson GM. A method for interpolating scattered data based upon a minimum norm network.Mathematics of Com-
putation1983;40:253–271.

3. Andersson L-E, Elfving T, Iliev G, Vlachkova K. Interpolation of convex scattered data inR3 based upon an edge
convex minimum norm network.Journal of Approximation Theory1995;80(3):299–320.

4. Vlachkova K. Interpolation of convex scattered data inR3 based upon a convex minimumLp norm network, 1< p ≤
∞. Comptes Rendues de l’Academie Bulgare des Sciences1992;45(12):13–15.

5. Andersson L-E, Elfving T. An algorithm for constrained interpolation,SIAM Journal on Scientific and Statistical
Computing1987;8(6):1012–1025.

6. Kantorovich LV, Akilov GP.Functional Analysis. Nauka: Moscow, 1977 (in Russian).
7. Ortega JM, Rheinboldt WC.Iterative Solution of Nonlinear Equations in Several Variables. Academic Press: New

York, 1970.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl.2000;7:133–146


