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SUMMARY

Given convex scattered dataRr we consider the constrained interpolation problem of finding a smooth, minimal
Ly-norm (1< p < oo) interpolation network that is convex along the edges of an associated triangulation. In
previous work the problem has been reduced to the solution of a nonlinear system of equations. In this paper we
formulate and analyse a Newton-type algorithm for solving the corresponding type of systems. The correctness
of the application of the proposed method is proved and its superlinear (in some cases quadratic) convergence is
shown. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of interpolating data in 3-dimensional Euclidean sgdd®y smooth surfaces has various
applications in both theory and practice and has consequently received considerable attention in the last
decades, (see, for example, a survey lihl et al. [1]). The problem can be formulated as follows:
given a set of points ( datd);, y;, z;) € R%,i = 1,...,n, find a bivariate functiors, defined in a
certain domairD, that possesses continuous first-order partial derivatives and such(that;) = z;.
In many cases, it is important that the interpol&rsatisfies some additional constraints or possesses a
certain extremal property.

In Reference [2], Nielson presents an interpolation method based on the so-called minimum norm
networks. The method works in the following three steps.

(i) Triangulation The projectionsV; = (x;,i,0) ,i = 1,...,n, are used as the vertices of a
triangulation of the domai in the plane(x, y, 0).
(i) Minimum norm networkThe interpolantS and its first-order partial derivative$, and S, are
defined on the edges of the triangulation so as to satisfy an extremal property.
(i) Blending The obtained network is extendedSdoy an appropriate blending method.
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134 K. VLACHKOVA

In Reference [3] Anderssoet al. pay special attention to the second step of the above method, i.e.
the construction of the minimum norm network. By a different approach, the authors give a new proof
of the Nielson’s result and additionally consider the case of convex data. In this case, it is natural for
the theory, and important for the practice, that the constructed interpolant inherits the convexity of the
data.

Anderssoret al. formulate the corresponding extremal constrained interpolation problem of finding
a minimum L2-norm interpolation network that is convex along the edges of the triangulation. The
convex minimumL2-norm network is characterized as a solution of a nonlinear system of equations.
The results from Reference [3] are extended in Reference [4] to the clagsrairms for 1< p < oo.

The problem of finding a numerical method for the solution of the corresponding non-linear systems
of equations naturally arises and its investigation is thereby desirable. In the univariate case, Andersson
and Elfving [5] proposed a Newton-type method for the solution of the corresponding constrained inter-
polation problem. Under certain conditions, the method has been shown to be correct and superlinearly
convergent.

In this paper, we apply the approach from Reference [5] and, based on results from References [3,
4], formulate a Newton-type algorithm for solving nonlinear systems that arise from the constrained
minimum L,-norm (1 < p < oo) interpolation problem ink3. The method has been proposed for
the casep = 2 in Reference [3] without proper investigation of its validity and convergence. Here we
prove that under certain conditions the method correctly applies to the corresponding class of nonlinear
systems and achieves superlinear ( quadratic fard < 2) convergence.

The paper is organized as follows: in Section 2 we introduce notation, formulate the extremal problem
of interest and present some related results from References [3,4]. We explain how the extremal problem
reduces to the solution of a nonlinear system of equations and describe its general type. In Section 3, we
formulate a Newton-type algorithm for solving this type of system and prove its validity and convergence.
Finally, in Section 4 we make concluding remarks and present some numerical experiments and results.

2. NOTATION AND RELATED RESULTS

Letn (n > 3) be aninteger and & = (x;, vi, zi),i = 1, ..., n, be different points irk3. We call this

set of pointgddata We assume that the projectiolis= (x;, y;) of the data into the plang:, y, 0) are
different. Stressing the fact th#t are in a general position, although not necessarily irregularly placed,
we call such datacattered

A polygonal domainD that contains all the pointg; and has vertices at some of them is associated
with the data.D is not necessarily simple—it may contain holes.

Next, we say thaf is atriangulation of the pointsV;,i = 1,...,n, in D if T is a collection of
non—overlapping, non—degenerate closed triangigswith verticesV;, V; andV;. Each projection
point V; is a vertex of at least one triangle and no vertex of a triangle lies in the interior of an edge of
another triangle. The union of all triangles is the dom&ain

The set of edges of the triangleshis denoted byE. If there is an edge between verticésand
Vi in E, it will be referred bye;;. The edges irE define anedge networkn the domainD, which we
denote byE p (or simply by E if no ambiguity arises).

For a given triangulatiof’, there is a unique continuous functién: D — R? that is linear inside
each of the triangles & and interpolates the data, ik(V;) = z; fori =1, ..., n.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra AppR000;7:133—-146



A NEWTON-TYPE ALGORITHM FOR CONSTRAINED INTERPOLATION 135

Next, we define the notion of convex scattered data in a given domain

Definition 2.1. Scattered data in a polygonal domain are convex if there exists a triangulatidh
of D such that the corresponding functidnis convex. The data are strictly convex if they are convex
and the gradient of. has a jump discontinuity across each edge indide

There exist software packages that can test scattered data in a given domain for convexity and construct
the corresponding triangulatidh. Hereafter, we shall assume that our data in a polygonal domain
are scattered, strictly convex and tffats the corresponding triangulation 6f from Definition 2.1.

Definition 2.2. A curve network is a collection of real-valued univariate functions
{fe}. € g, Wheref, is defined on the edgec E.

With any real-valued bivariate functiof defined onD, we naturally associate the curve network
defined by the restrictiott|z as follows:

fe(t) '=F <<1— L) Vi+ LVj) = F (x.(1), ye (1)) (2.1)
llell llell

where
(1) (1 ! ) 4! (1) (1 ! ) 4!
X =(1- —)x;+ —ux,, y _ — )y —y;
¢ lell )™ " lell™ ¢ lell )" " lell ™

O<i<llel. leli=y/Gi—x)2+ (i —y)? e€E

In our presentation, according to the contektwill denote either a real-valued bivariate function or
a curve network defined by Equati@@.1). For a realp, such that 1< p < oo, we introduce the
following class of functions defined ob:

Fp={F(x,y) | FGi,y)=z,i=1...,n, 0F/dx,0F/dy € C(D)
f. € ACD e, 1! € Lip oy € € E)
and the corresponding class of so-callaaboth interpolation edge-convex curve networks
Cp(E) ={Fg ={flep | F&.») EF,, f/ >0, e€E}

For F €C,(E), we denote the curve network of second derivativeg'dly F” := {f,)},c . The
L,-norm of F” is defined by

1/p lel Yp
IF" I, = (/E |F”|Pdr) = (Z /0 |f;’(r)|Pdt>
e € E

Now we are ready to formulate the extremal problem of finding the smooth interpolation edge-convex
curve network with minimuni ,-norm second derivative that is of interest:

(P,) Find F* €C,(E) such that| F*"||, = inf [F"||,
FEC,(E)

P
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The problem(P,) has been considered in Reference [3] foe= 2 and in Reference [4] for any
p, 1 < p < oo. In both cases, it has a unique solution, which has been successfully characterized in
References [3,4]. Below we outline the approach for this characterization and formulate the main result
of Reference [4], which reduces the solution(8f,) to the solution of a nonlinear system of equations.
The key observation is that the second derivafi€ of the optimal curve network is always the
positive part of a curve network that is linear on each of the edgés ©hereby, the idea is to represent
it by simple linear curve networks calldmsic curve networkAs has been proved in Reference [3],
these basic curve networks form a basis in a subspace of linear curve networks and can be viewed as
a successful generalization of one-dimensional lingaplines to the case of linear curve networks
defined on the edges of a given triangulation.
Recall thak;; denotes the edge between projectitnandV; inthe triangulatior?. Fori =1, ..., n
let m; be the number of the edges incidentWoin 7. Furthermore, lete;;, . """’”w} be the edges
incident toV; listed in clockwise order arouny;. The first edge;;, is chosen so that the coefficient
A(S) defined below is not zero—this is always possibleb@sic curve networlB;, is defined for any
palr of indicesis, suchthat = 1,...,nands =1, ..., m; — 2. The basic curve networR;; is zero
on all edges of excepte;;,.e;;,, , ande,-,»Hz, where it is linear. More precisely;; is defined by

) 3
)"r,i (1 - ”e”sir71|‘> on eiis+;‘—l’ r= 1’ 27 3’

Bjs = 0<t < eyl
0 on the other edges df

The coeﬁ|C|ent§(S), r = 1,2, 3, are uniquely determined to sum to one and to form a zero linear
combination of the three unit vectors along the edggs,_, starting atV;.

Note that basic curve networks are associated with points that have at least three edges incident to
them. Thus, if a point is incident to two edges only (this might happen on the bounda&xytbén no
basic curve network is associated with that point. We denot# pyhe set of pairs of indices for
which a basic curve network is defined, i.e.

Np={is|m;=>=3,i=1...,n,s=1,...,m; — 2}
With each basic curve netwoil;, for is € Ng we associate a numbéy; defined by
(S) )\(S) k(s)

= e ||( is — i)+7(115+1 z,')+7(zls+2 Zi)
€ij

lleiigql leiig. |l
which reflects the position of the data in the supporting s&;of The numberg;; possess interesting
properties and can be viewed as a generalization of the second-order divided differences in the univariate
case. For us it is important that these numbers are positive when the data are strictly convex. The next
theorem characterizes the solution of the probiéy).

is

Theorem 2.1. (Reference [4])In the case of strictly convex data the proble¢f®),) has a unique
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A NEWTON-TYPE ALGORITHM FOR CONSTRAINED INTERPOLATION 137

solution F*. The second derivative of the solutiéri” is of the form

qg—1

*7/
F* = Z ajs B
iSENB +

wherel/p + 1/q = 1, (x)+ = max(x, 0) and the coefficients;, satisfy the following nonlinear
system of equations:

q—1

/ > aisBis Budt =dy,  for ki€ Np. (2.2)
E

iSENB +

3. NEWTON-TYPE ALGORITHM

According to Theorem 2.1, the solution of the extremal constrained interpolation praBlgms
reduced to the solution of the systé&2). When the data are strictly convex, the sysi@2) always
has a solution and it is unique (see Reference [3] for the pase2). The proof of this result in the
case 1< p < oo is similar and we omit it here.

We begin this section by defining a Newton-type algorithm for the solution of the sy&t@mNext,
we prove the correctness of the presented algorithm and investigate its convergence.

Let N be the size of the systef®.2) or, which is the same, the number of basic functi®ysfor
is € Ng. We denote byrR" the corresponding linear vector space. It will be convenient to view the
vectors inkRY as column vectors. To keep our notation from the previous section we use pairs of indices
for the elementsy;, of the vectorse € RY. Furthermore, we assume thali is lexicographically
ordered and thereby

T
o = (11, ... 0Ly —2, 021, -+, Oy« - -5 Oy, —2)

The same enumeration is used for the equations of the sy&e@im So, the vector on the right-hand
side of systeni2.2) becomes

d=(d11, ..., dimy-2,d21, ..., dn1, ..., dum,—2)"

Linear combinations of basic curve netwotks that correspond to the vectarss R" are denoted by

p(a) == Z Qs Bis

is € Np

Definition 3.1. Strictly convex scattered data RF are degenerate if the solution of the corresponding
extremal problen{P,) has the property that

pa) = Y  of B

is € Np

is zero on a whole edge of the triangulatign

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra AppR000;7:133—-146
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Hereafter, we assume that our data are non-degenerate iarid a neighbourhood of the solution

a*

Consider now the operatdr : RN — R" defined by

(P(@))i :/E((p(a))zr_l By dt (3.1)

where ¥p + 1/q = 1. Forq > 1, the integrals along the edges in definiti@1l) exist and therefore
the operatom («) is well defined inR™ . In our analysis below it will be helpful to represent the positive
part of () by its corresponding characteristic curve netwgkk) defined on the edgesc E by

1 if @e(a;1) >0

Xe(a) = Ye(a; 1) = { 0 if @e(a;1) <0

whereg, (a; t) is the restriction ofp(«) one andz € [0, ||le]||]]. Then definition(3.1) becomes

(P (@) Z/E(<P(a))"_lx(0t)3kz dr (3.2)

In the formulation of our Newton-type algorithm for Equatiaf2s2) we need the @teaux (weak)
derivative®’ () of ® (). First, assuming thab’ () exists, we find it in an explicit form. Then we shall
prove that our computations are valid.

For any fixedx € R, the Gateaux derivative®’ («) (if it exists) is a linear continuous operator from
RY to RV . The linear operato®’(«) is anN x N matrix whose elements in our case (see Reference
[6], pp.- 489—-490) are given by

0 .
(CD’(a))kl’iS = e (P () where kl,is € Np

We formally differentiate in definitior{3.2) and obtain

d
oas

(@) =g -1 /E (p(@)? % x (@) By Bis o (3.3)

To verify the correctness of the differentiation we investigate the continuity with respeaiftthe
functions in the integrals in Equation3.2) and(3.3). Then we prove that for any fixad the operator
defined by Equatiori3.3) is a linear continuous operator froRl" to RV

The functions(¢(a))? 1 x () in the integrals in definition3.2) and (¢(«))? =2 x (@) in Equation
(3.3) for ¢ > 2 are always continuous with respecttd In the case 1< ¢ < 2, since the data are
non-degenerate, the functions in Equati@r8) are continuous with respect o

Now we fix « and consider Equatiof8.3). The integrals on the edges in Equati@mB) readily exist
in the case; > 2. In the case k ¢ < 2, we observe that the restrictign(w; ¢) is a linear function
in [0, |le|]]. Since the data are non-degeneratg; r) can have no more than one simple zero in the

¥ Note that this is true even if the data are degeneratex beta vector such that(@) is zero on a whole edge€ E. Then
the characteristic functiop(«) is not continuous i but since it is bounded and in addition the restrictipi; 1) = 0

for t €[0, |le||], then(g(e))? 1 x (&) and(p(x))?~1 x (@) for ¢ > 2 are continuous if.
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A NEWTON-TYPE ALGORITHM FOR CONSTRAINED INTERPOLATION 139
interval [, ||le]|]]. Thus, the integral

[lell
/0 (el 1))972 xo(a; 1) B () Bis (1)

converges. For any fixed, the linear operator defined by Equati¢®3) is obviously bounded and
therefore continuous. Thus, théteaux derivative exists for any fixedin a neighbourhood af* and
is represented by Equati@B.3).

Now, in our notation the systel2.2) becomes

da)=d (3.4)
and the Newton-type algorithm for solving Equati@¥) follows from the equation
@)@t —a") =d - d(@")

wherea? is initially chosen and" for v = 1, 2, ... are consecutive approximations of the solu@dn
of Equation(3.4). More precisely, we shall apply the following procedure.

Algorithm 3.1.  (Newton-type algorithm)

Step 1. Choose an appropriate initial vectdt € RV, and set an accuracy parameter- 0.
Step 2. Fow =0, 1, ... find the next approximation vectat ** from the following linear system

@)@t —a")=d — d@") (3.5)
Stop ifja’t! — a”| < &.

To prove the correctness and the convergence of this algorithm, we apply a theorem from Reference
[7], which in our case states the following.

Theorem 3.1. (Reference [7]). The approximation sequefee}®” ; is well defined and superlinearly
convergent provided

(i) The operatord’(«) continuously depends @nin a neighborhood of the solutiar.
(i) The matrix®’(a*) is invertible.
(iii) The initial vectora? is chosen close enoughdd.

Additionally, the convergence is at least quadratic if
(iv) The second &eaux derivatived” («) is bounded in a neighbourhood @f.

Next until the end of the section, we verify and comment upon the validity of the condifipr{i)(
and {v).

The condition {) follows from the continuity with respect @ of the elements of the matrik’ («),
which has been proved already. Note that from the validity of (i) it follows that in a neighbourhood of
a* there exists the Echet (strong) derivative @ («) and both derivatives (weak and strong) coincide.

We establish the conditionii) in the next lemma by showing that the matdX(«*) is positive
definite.

Copyright © 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra AppR000;7:133—-146
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Lemma 3.1. The matrix®’(«*) is positive definite.

Proof
We shall prove thag " @' («*) > 0 for anys € RV . Sincea* = {of }is € v SOIVes the systen?.2),
we have

q-1
/ Y B |  Bu@)dr=dy. kENg
E\is€ng N
or 1
.
| Y e« Bu) | Buydi=dy. KIENg (3.6)
SUPA(Bk:) is & Ng n

By the definition, suppBy;) consists of the three edges, ex;+1, ex+2 and sincely; > 0 for each
kl € Np, Equation(3.6) implies

max aBist)] >0 for kIEN 3.7
SUpR( Bx1) is;\lg is Bis )) B (3.7)

Let 8 € RN be an arbitrary vector. We have

q—2 2
Frowp=a-v[ [ ¥ asno| | ¥ aso)a @9
E\is € ng is € Np
and consequentlg’ @' (¢*)8 > 0.
Now, we shall prove that
BT (@) =0iff B=0 (3.9)

The sufficiency is obvious. For the necessity, we assume that, for omed’ («*)8 = 0. From
(3.8) it follows that

x@) | Y BisBis(t) | = x@)ep(B) =0 (3.10)
is E NB
Consider an arbitrary verte,, 1 < k < n, of the triangulation and leB;; be the basic curve network
for somel, ki € Np. From (3.7) it follows that on some of the three edgg$, exi+1, exi+2, Sayex,
there exists a subinterva;}l, tkzl) such that the restrictioml(tkll’tkzl)(a*) = 1. Then from(3.10) we have
that
¢(B)= > BisBis(t)=0 forevery t &t 1)
is E NB
The basic curve network; for is € Ng are linearly independent and theref@ge = 0 for those pairs
is for which supgB;;) N (tkll, tkzl) # @. In particulargy; = 0 and sincek/ was chosen arbitrary we have
B =0. [ |
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Next, we investigate the validity o). Consider the seconddBeaux (weak) derivativé” («). For
any fixeda € RN, @ («) (if it exists) is a linear continuous operator fraR?Y to the space of the linear
continuous operators iR" and thus it can be considered as a bi-linear operator ®dmx R" to
RY (see Reference [6], pp. 646—652, for details). In our c@$éy) (if it exists) can be defined b3

elements )

3 o
(@"@)ii5jm = Garedary, (P where ki, is, jm € Ng
or by the mapping
RN x RN 5 g1 x g2 —> BERV,

where, giverg! andg?, the vector is defined by

82
Bn= D Y aa— (@) BB (3.11)

o0
KENgisENg =~ 5777M

The nextlemma shows that the conditior) (s valid in the case < 2 (i.e.qg > 2,since ¥p+1/q =
1).

Lemma 3.2. Letg > 2. The second &eaux derivatived” (o) exists and is bounded in a neighbour-
hood of the solutiom*.

Proof
Consider the casg > 2 first. Foris, kI, jm € N from Equation(3.3) we obtain

2 d
(P (@) P (CD/(a))kl,is

8(Xl'xa(x]'m B(ij

(g—Dqg—-2 /E (@(@))?7> x (@) B Bis Bjm di.

(3.12)

Similar to the integrals in Equatiai3.3), the integrals in Equatio(8.12) readily exist forg > 3. In
the case 2< ¢ < 3, the existence is ensured by the non-degeneracy of the data and the integrals are
convergent since the restrictionsg(x) on the edges of are linear functions. The operator defined by
Equation(3.11) is bi-linear for any fixedr € RV . Thus, ifg > 2 the second &eaux derivative” («)
exists for any fixedv € RV and is represented by Equatic®12). Obviously®” («) is bounded in a
neighbourhood o#*.

Now, consider the casg= 2. In this case, the formulg.12) becomes

4 a
(@ (“))kl,is,jm Z/E X(a)Bleis dr (3.13)

3ajm

Let us consider again the restrictipp(«; ), t €[0, |le||], of the functiong(«) on an arbitrary edge
e € E. If . (a; t) does not change its sign, then from Equati8ri3) the corresponding integral en
is zero. Otherwisey, («; t) has a simple zerg(«x) €(0, |e|) for which

@e(a; to(@)) =0 and ¢, (a; 0(w)) #0 (3.14)
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Let () denote Dirac’s delta function. Although the characteristic function is not differentiable it might
be considered as a distribution and the next formal calculations could be easily verified. We have

el el
/O dx () Bu By, ot :/o 8(t — ro(e))

Ajm

fo(a)

a
a()ljm

By Bis dt (3.15)

We find the derivativédro(«) /0, from (3.14) by differentiation:

0@ (a; , 0
0= W) _ (e + e t0fe) T
jm

oaj,

and after a substitution in Equatig8.15) we obtain

_ Bim(to(@) [l

(@) isjm = @y 8 toe) BuBis o
Bn(io(@)) |
—mBkz(to(a))Bm(to(a))

The last expression is a bounded functioredh a neighbourhood of the solutiart.
The edge: was chosen arbitrary and thus, in the case 2, the derivatived” («) exists for any fixed
a and is bounded in a neighbourhood of the solutién ]

Finally, we summarize our results. For non-degenerate data, the algorithm based on E@.&tion
is well defined and we can construct a sequence of vectors

ol ab, . (3.16)
for which the following theorem applies.

Theorem 3.2. If the given data are non-degenerate and the initial veatdis appropriately chosen,
then the sequeng8.16) converges to the solutiart of the systentB.4) and the corresponding sequence
of curve network$go(oz”))?[l converges to the second derivative of the solutiorPpj,(1 < p < oo.
The convergence is at least quadratic in the case p < 2 and superlinear otherwise.

The results in this section have been obtained by applying and adopting the approach and analysis
proposed in Reference [5]. The authors there, among others, considered the p@flénflnctions
defined on a one-dimensional interval and proved a result analogous to Theorem 3.2 in the univariate
case.

4. NUMERICAL RESULTS

In this section, we report briefly the results of some experiments done with Algorithm 3.2 above. We have

considered scattered convex data generated from convex bivariate functions with Delaunay or regular
triangulation associated with the projection points. The solution of the corresponding nonlinear system

(2.2) has been approximated by a sequemter?, ... computed by iterationg3.5). The particular
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calculations can be simplified by observing that

g—1
@@, = [| ¥ o) Bud
E\isENg N
q—2
= / Z otl})SB,-S Z Ol;)SBis By dr
E\isE Ny + \isE€Eng
q—2
= Z a;’S/ Z a,!)SBis BisBkldt
is € Np E\isENg N

1 / v v
= ﬁ(q) (@) )kl

Thus, we have  ®(a") = (1/(g — 1))®'(@”)a’ and the systeni3.5) becomes
O (@'t =d+ (g — 2@ (") (4.1)

The formula(4.1) is particularly simple in the cage = ¢ = 2 and here we deal with this case only.
It becomes
(@)t =d

which in our notation is
0
[ X aso) | X arsu0|suwd =d mens,
E

is € Np + is € Np

To choose an initial approximation vect@? we use the related unconstrained minimiimnorm
interpolation problem:

(P2) Find F* €Cp(E) such that| F*||; = inf  |F”|2
FECy(E)

where 3
C2(E) :={Fe ={fecr | F(x,y) €EF2}

is the class ofmooth interpolation curve networksot necessarily convex along the edged"dfin
Reference [3] it is shown that the solution of the probl@ep) reduces to the solution of the following
linear system:

> Olis/ Bis()Bu(t)df =du, kI ENg (4.2)
isEng 'E

So we have used as an initial approximation veafdthe solution of the linear systetd.?2), i.e. the
solution of the unconstrained problem. Other initial approximation vectors we have tested produced
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Table |. Data 1.

i 1 2 3 4 5 6 7 8 9 10 11 12
x; 000 000 016 020 040 032 048 052 0.60 0.68 0.00 0.00
y 000 10 032 080 040 0.76 048 0.64 040 056 000 1.0

i 13 14 15 16 17 18 19 20 21 22 23
x; 0.00 024 020 020 036 040 052 0.60 0.60 0.80 0.96
yi 060 004 060 10 056 10 052 008 080 0.20 0.60

Figure 1. Edge convex minimum norm network based on Data 1.

almost identical convergence patterns. Our experiments suggest that the method converges globally.
The program code is written inoRTRAN and run, in double precision arithmetic, on a PC with
standard Pentium processor. For the experiments presented here we used accuracy pataffeter
The graphs of the edge-convex minimurp-norm curve networks are drawn using tdathematica
2.2 package.
Below we present two of our experiments. In the first exampte 23 and the projectiong; of the
data are shown in Table I. The associated triangulation in this case is the Delaunay triangulation. The
heightsz; are obtained from the bivariate convex function

F(x,y) = 25070940709 (x _05)2 4 (y - 0.5?)
The stopping criteriofa’*! — o¥|| < 108 was satisfied after three iterations and the 3rd and 4th
iterations were identical. The corresponding edge convex curve network is shown in Figure 1.
In the second example = 30 and the associated triangulation is a regular mesh with veitjcas
shown in Table Il. The heightg are obtained from the function

F(x,y) = —In?(16— (x — 3)2 — (y — 3v/3/2)?)
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Table Il. Data 2.

i 1 2 3 4 5 6 7 8
x; 15 25 35 1.0 2.0 3.0 4.0 0.5
yi 3/3 3/3 3/3 25/3 25/3 25/3 25/3 2/3
i 9 10 11 12 13 14 15 16
x; 15 25 35 4.5 0. 1.0 2.0 3.0
yi 2/3  2/3  2/3 2/3 15/3 15/3 15/3 15/3
i 17 18 19 20 21 22 23 24
x; 4.0 5. 1.5 1.5 35 4.5 0. 1.0
y; 15/3 15/3 /3 V3 V3 V3 v3  05/3
i 25 26 27 28 29 30

x; 2.0 3.0 4.0 1.5 25 35
y; 0543 053 05/3 0.0 0.0 0.0

Figure 2. Edge convex minimum norm network based on Data 2.

The stopping criterion was satisfied after three iterations and the 3rd and 4th iterations were identical.
The corresponding edge-convex minimdimnorm curve network is shown in Figure 2.
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