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Abstract. We consider the problem of extremal interpolation of convex
scattered data in R3 and propose a feasible solution. Using our previous
work on edge convex minimum Lp-norm interpolation curve networks,
1 < p ≤ ∞, we construct a bivariate interpolant F with the following
properties:
(i) F is G1-continuous;
(ii) F consists of tensor product Bézier surfaces (patches) of degree (n, n)

where n ∈ N, n ≥ 4, is priorly chosen;
(iii) The boundary curves of each patch are convex;
(iv) Each Bézier patch satisfies the tetra-harmonic equation ∆4F = 0.

Hence F is an extremum to the corresponding energy functional.

1 Introduction

Scattered data interpolation is a fundamental problem in approximation theory
and finds applications in various areas including geology, meteorology, cartogra-
phy, medicine, computer graphics, geometric modeling etc. Different methods for
solving this problem were applied and reported, excellent surveys are [4,5,8,9].

The problem can be formulated as follows: Given scattered data di = (xi, yi, zi)
∈ R3, i = 1, . . . , N , that is points vi = (xi, yi) are different and non-collinear,
find a bivariate function F defined in a certain domain D containing points vi,
such that F possesses continuous partial derivatives up to a given order and
F (xi, yi) = zi. One of the possible approaches to solving the problem is due to
Nielson [14]. The method consists of the following three steps:

Step 1. Triangulation. Construct a triangulation T of vi, i = 1, . . . N .

Step 2.Minimum norm network (MNN). The interpolant F and its first order
partial derivatives are defined on the edges of T so as to satisfy an extremal
property.

Step 3. Interpolation surface. The obtained network is extended to F by an
appropriate blending method.

In [1] Andersson et al. paid special attention to the second step of the above
method, i.e. the construction of the MNN. The authors applied a novel approach
and gave an alternative proof of Nielson’s result. Their method allows to con-
sider and handle the case where the data are convex and a convex interpolant
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is sought. Andersson et al. formulated the corresponding extremal constrained
interpolation problem of finding a MNN that is convex along the edges of the
triangulation. The extremal network was characterized as a solution to a non-
linear system of equations and a Newton-type algorithm for solving this type
of systems was proposed. The results from [1] are extended in [16] to the class
of Lp-norms for 1 < p ≤ ∞. The validity and convergence of the Newton-type
algorithm for 1 < p ≤ ∞ were studied further in [17]. We note that the edge con-
vex MNN may not be globally convex and hence a convex interpolation surface
may not exist at all. Moreover, even in the case where the edge convex MNN is
globally convex, Nielson’s blending method may produce non-convex surface.

In this paper we propose the following solution to the convex scattered inter-
polation problem. Instead of triangulation we construct a rectilinear quadrangu-
lation Q having points vi = (xi, yi), i = 1, . . . , N , as its vertices, see Fig. 1. We
define suitable z-values for different from vi vertices of Q (if any) and add the
new points to our data. Then we compute the edge convex minimum Lp-norm
network for p = n−1

n−2 where n ∈ N, n ≥ 3, is chosen in advance. Hereafter we
assume that n is part of our input data. The obtained edge convex MNN on
every edge of Q is either a polynomial of degree n or a C1-continuous spline
with one inner knot consisting of a linear function plus a polynomial of degree
n, see [16]. Moreover, the obtained network is not only edge convex but also
it is convex on every whole row or column of Q. This is one of the reasons we
use rectilinear quadrangulation instead of triangulation. Despite that, in general
the edge convex MNN still may not be globally convex. For that reason we are
seeking to construct an interpolation surface that is computationally simple and
minimizes some appropriately chosen energy functional. Surfaces with such prop-
erties tend to preserve convexity of the input data. Nielson’s blending method
[13,14] produces an interpolant which is a rational function on every triangle in
T and consecutively may have large values in terms of energy. So, our idea is as
follows. First, we slightly modify the edge-convex MNN on the edges where it
is a spline. The modified MNN is C1-continuous with the same tangent planes
at the vertices of Q, consists of edge convex Bézier curves of degree n, and is
convex on every row or column of Q. Next, we find a piecewise polynomial sur-
face that interpolates the modified MNN and minimizes an appropriate energy
functional. Although the modified MNN is C1-continuous at the vertices of T , it
is preferable and more appropriate to require G1-continuity for the interpolant
instead of C1-continuity since the latter is parametrization dependent. We recall
that two surfaces with a common boundary curve are G1-continuous if they have
a continuously varying tangent plane along that boundary curve.

Let D be the union of all quadrangles in Q. For simplicity we assume that D
contains no holes. We construct a surface F (u, v) defined on D that interpolates
the modified MNN and has the following properties:

(i) F consists of tensor product Bézier surfaces (patches) of degree (n, n). Each
patch is defined on a quadrangle of the mesh;

(ii) F is G1-continuous;
(iii) The boundary curves of each patch are convex;
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(iv) F satisfies the tetra-harmonic equation ∆4F = 0 a.e. for (u, v) ∈ D where

∆ = ∂2

∂u2 +
∂2

∂v2 is the Laplace operator. Hence F is a solution to the extremal
problem

argmin
x∈F

∫
D

∥∆4x∥dudv, (1)

where F :=
{
x(u, v) : x(vi) = zi, i = 1, . . . , N, x ∈ W 8

2 (D)
}
, and W 8

2 (D)
is the corresponding Sobolev space. Then F is an extremum to the corre-
sponding energy functional.

The harmonic and bi-harmonic Bézier surfaces were studied by Monterde
and Ugail [11]. Their method was extended to general 4th-order PDE Bézier
surfaces in [12]. Here we use a result by Centella et al. [2] to generate tetra-
harmonic tensor product Bézier surfaces from given boundary curves and tangent
conditions along them. The corresponding unconstrained problem for scattered
data interpolation in R3 is considered and solved in [18] using a rectangular
quadrangulation.

The paper is organised as follows. In Sect. 2 we introduce the notation,
present some related results from [1,16], and propose our Algorithm 1 for solv-
ing the convex scattered data interpolation problem. In Sect. 3 we discuss the
construction of the surface F .

2 Preliminaries and Description of the Algorithm

Fig. 1: Rectilinear quadrangulation of
the projection points vi, i = 1, . . . , N ,
where • denotes old (given) points, and
× denotes new (added) points.

A quadrangulation of given points in R2

is a collection of non-overlapping, non-
degenerate closed quadrangles such that
the set of the vertices of the quadran-
gles coincides with the set of the points.
We shall assume that our points vi, i =
1, . . . , N , are vertices of a quadrangula-
tion Q that is homeomorphic to a rectilin-
ear quadrangulation where vertical (hor-
izontal) lines are not necessarily parallel.
Given set of points in a general position
in R2 one can not construct a rectilinear
quadrangulation having these points as its
vertices. However, we can construct it so
that all of our points are among its vertices. The remaining vertices are added
to the given points, see Fig. 1. An obvious way is to draw vertical and hori-
zontal lines through each of our points. We can also choose appropriately two
directions in the plane and draw lines parallel to the chosen directions through
each of vi, i = 1, . . . , N . Clearly this approach does not lead to unique quadran-
gulation. It is an open question to find the dependance of the input surface on
the initial choice of the quadrangulation. Furthermore, the above approach has
a drawback that the number of the new vertices is quadratic in terms of N . Our



4 K. Vlachkova

method works directly in the case where Q is a rectilinear quadrangulation, see
Fig. 1. The benefit of constructing a rectilinear quadrangulation so that points
vi,, i = 1, . . . , N , are its vertices is that the number of the new (added) vertices
would be reduced considerably although in the general case their number still
would be quadratic in terms of N . Given scattered data finding an optimal in
terms of size rectilinear quadrangulation is beyond the scope of this paper.

We define zi-values for the new points so that the data are in a convex
position. The latter is possible due to the following lemma from [1].

Lemma 1. ([1]) If the data are convex (strictly convex) then there exists a con-
vex (strictly convex) function ψ ∈ C∞(R2) interpolating the points di, i =
1, . . . , N .

The proof of Lemma 1 is constructive and the function ψ is constructed
in a polynomial time. We choose the zi-values for the new points di so that
ψ(xi, yi) = zi. Hereafter we suppose that our data are strictly convex.

The union of all quadrangles in Q is the domain D. The set of the edges of
the quadrangles in Q is denoted by E. If there is an edge between vi and vj in
E, it will be referred to by eij or simply by e if no ambiguity arises. A curve
network is a collection of real-valued univariate functions {fe}e∈E defined on the
edges in E. With any real-valued bivariate function F defined on D we naturally
associate the curve network defined as the restriction of F on the edges in E,
i.e. for e = eij ∈ E,

fe(t) := F
((

1− t

∥e∥
)
xi +

t

∥e∥
xj ,

(
1− t

∥e∥
)
yi +

t

∥e∥
yj

)
,

where 0 ≤ t ≤ ∥e∥ and ∥e∥ =
√
(xi − xj)2 + (yi − yj)2.

(2)

In our presentation, according to the context, F will denote either a real-
valued bivariate function or a curve network defined by (2). Let 1 < p <∞. We
introduce the following class of functions defined on D

Fp :=
{
F (x, y) ∈ C1(D) : F (xi, yi) = zi, i = 1, . . . , N,

f ′e ∈ AC[0, ∥e∥], f ′′e ∈ Lp[0, ∥e∥], e ∈ E
}
,

and the corresponding class of smooth interpolation edge convex curve networks

Cp(E) :=
{
F |E = {fe}e∈E : F (x, y) ∈ Fp, f

′′
e ≥ 0, e ∈ E

}
.

For F ∈ Cp(E) we denote the curve network of second derivatives of F by
F ′′ := {f ′′e }e∈E . The Lp-norm of F ′′ is defined by

∥F ′′∥p :=

(∑
e∈E

∫ ∥e∥

0

|f ′′e (t)|pdt

)1/p

.

We consider the following extremal problem.

(Pp) Find F ∗ ∈ Cp(E) such that ∥F ∗′′∥p = inf
F∈Cp(E)

∥F ′′∥p.
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The degree of all inner vertices in Q, i.e. the number of the edges in E
incident to each inner vertex, is four. Let {eii1 , . . . , eii4} be the edges incident
to the inner vertex vi listed in clockwise order around vi. A basic curve network
Bis is defined on E for s = 1, 2 as follows.

Bis :=

{
1− t

∥eiis+r
∥ on eiis+r , 0 ≤ t ≤ ∥eiis+r∥, r = 0, 2,

0 on the other edges of E.

Note that basic curve networks are associated with vertices that have at least
two collinear edges incident to them. Thus, one basic curve network is associated
with each vertex on the boundary of Q except the four corner vertices. We denote
by NB the set of pairs of indices is for which a basic curve network is defined.
With each basic curve network Bis for is ∈ NB we associate a number dis defined
by dis = (zis − zi)/∥eiis∥+ (zis+2

− zi)/∥eiis+2
∥.

The next theorem characterizes the solution to problem (Pp).

Theorem 1 ([1,16]). In the case of strictly convex data the problem (Pp), 1 <
p <∞, has a unique solution F ∗. The second derivative of the solution F ∗′′ has
the form

F ∗′′ =

( ∑
is∈NB

αisBis

)q−1

+

where 1/p + 1/q = 1, (x)+ := max(x, 0) and the coefficients αis satisfy the
following nonlinear system of equations

∫
E

( ∑
is∈NB

αisBis

)q−1

+

Bkldt = dkl, for kl ∈ NB . (3)

The basic curve networks Bis are the univariate basic B-splines defined along
every row and column of the quadrangulation Q and the numbers dis are the
univariate second-order divided differences. Our data are strictly convex which
guarantees that dis are strictly positive and therefore Theorem 1 applies. The
solution to (Pp) decomposes to n1+n2 solutions to the problem in the univariate
case along every row and column of Q, where n1, n2 are the numbers of the rows
and columns of Q respectively, and n1n2 = N . In the univariate case the problem
of finding a convex function which interpolates given convex data and minimises
the energy functional is considered e. g. by Hornung [6] for p = 2, and for
1 < p <∞ by Iliev and Pollul [7], Micchelli et al. [10].

It follows from Theorem 1 that in the case where q ∈ N, q > 1, then F ∗

is a C1-continuous polynomial network and the degree of the polynomials is
n = q+1. Hence to obtain a polynomial solution to (Pp) of degree n we solve the
nonlinear system (3) for p = q

q−1 = n−1
n−2 using the Newton-type algorithm [17].

Note that although Theorem 1 holds for 1 < p < ∞, we apply it only for
1 < p ≤ 2 since n ≥ 3. Further on, we consider the polynomials in its Bézier
form and propose Algorithm 1 for solving the convex scattered data extremal
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Algorithm 1 Extremal Convex Scattered Data Interpolation

Input: Strictly convex scattered data di = (xi, yi, zi) ∈ R3, i = 1, . . . , N ;
n ∈ N, n ≥ 3.

Output: Interpolation surface F with certain extremal property
Step 1. Construct quadrangulation Q of the projection points vi = (xi, yi),

i = 1, . . . , N , using straight lines through them.
Step 2. Add new input points to the data if necessary.
Step 3. Solve (Pp) for p = n−1

n−2
.

Step 4. Construct the modified edge convex MNN.
4.1 Compute the control points of the modified curves (if any).
4.2 Degree elevate all curves to curves of degree n+ 1.

Step 5. For each quadrangle in Q find nearest to the boundary control points
that satisfy G1 continuity conditions.

Step 6. Find the remaining inner control points so that the tensor product Bézier
surface for each quadrangle satisfies the tetra-harmonic equation ∆4F = 0.

interpolation problem. Step 5 and Step 6 of Algorithm 1 are similar to the
corresponding steps of the algorithm for the unconstrained case proposed in [18]
where they are considered in detail. In the next Section 3 we focus mainly on
Step 4 - the construction of the modified edge convex MNN.

3 Construction of the Bézier Patches

Let B1 and B2 be tensor product Bézier patches whose common boundary is the
polynomial q(t) of degree n, n ∈ N. First, we consider sufficient conditions for G1

continuity between B1 and B2. Let q(t) =
∑n

i=0 qiB
n
i (t) where qi, i = 0, . . . , n,

are the control points of q(t), and Bn
i (t) :=

(
n
i

)
ti(1 − t)n−i, i = 0, . . . , n, are

the Bernstein polynomials defined for 0 ≤ t ≤ 1. We degree elevate q(t) to

a polynomial of degree n + 1. Then q(t) =
∑n+1

i=0 q̂iB
n+1
i (t) where q̂i, i =

0, . . . , n + 1, are the degree elevated control points. Let pi and ri, i = 0, . . . , n,
be nearest to the boundary control points of B1 and B2, respectively. Farin [3]
proposed the following sufficient conditions for G1 continuity between B1 and
B2:

i

n+ 1
di,n+1 +

(
1− i

n+ 1

)
di,0 = 0, i = 0, . . . , n+ 1, where (4)

di,0 = α0pi + (1− α0)ri −
(
β0q̂i + (1− β0)q̂i+1

)
,

di,n+1 = α1pi−1 + (1− α1)ri−1 −
(
β1q̂i−1 + (1− β1)q̂i

)
,

and 0 < α0, α1 < 1. The coefficients α0 and α1 are uniquely determined by
the intersection point of segments p0r0, q̂0q̂1, and pnrn, q̂nq̂n+1, respectively.
In [18] it is shown that in the case where α0 = α1, system (4) always has a
solution. The vertex enclosure problem is also solved since we use a rectilinear
quadrangulation, see [15,18] for details.
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To construct an interpolating Bézier patch, the boundary curves need to be
polynomial curves. For that reason, we first modify the edge convex MNN so
that all edge curves comprising it are Bézier curves of degree n. In the case
where f∗e for some e ∈ E is a spline (see Fig. 2a for n = 3) we modify it to the
Bézier curve of degree n whose Bézier polygon has the same graph as the Bézier
polygon of the spline, see Fig. 2b for n = 3. The modified curve is convex and
has the same tangents at the endpoints as the spline.

a. b.

Fig. 2: Case n = 3: a. Convex C1-continuous spline with one inner knot and its control
polygon. The spline consists of a linear function plus a cubic function. b. The modified
cubic convex Bézier curve and its control polygon.

Fig. 3: Pair of cubic Bézier curves
defined on same line neighbouring
edges of Q. The right curve has
been modified. The modified curve
is shown dashed.

Next, consider a pair of Bézier curves de-
fined on same line neighbouring edges of Q,
see Fig. 3. Let di be their common point and
s1, s2 be the two segments of their Bézier
polygons with common endpoint di. By con-
struction s1 and s2 are collinear. We shorten
the longer segment by moving its endpoint
towards di so that the new segments s1 and
s2 become equal. Then we replace the cor-
responding Bézier polygon by the modified
one. In this way we ensure that α0 = α1 for
every edge of Q and hence system (4) can
be solved. Then we compute nearest to the boundary control points, see [18] for
details.

To compute the rest of the control points for each tensor product Bézier
patch Bi we use a result by Centella et al. [2]. It states that given the boundary
control points and those adjacent to them of an (n+1)× (n+1) net there exists
a unique tetra-harmonic Bézier surface whose control net has those points as
boundary control points and those adjacent to them. Finally, using Algorithm 1
we construct surface F (u, v) defined onD which consists of tensor product Bézier
patches of degree (n, n). The surface F interpolates the data since it interpolates
the modified edge convex MNN. The next theorem states main properties of F .

Theorem 2. The interpolant F (u, v) is G1-continuous and is a solution to the
extremal problem (1).
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faces from the boundary. Comput. Aided Geom. Design 23, 208-225 (2006)

13. Nielson, G.M.: Minimum norm interpolation in triangles. SIAM J. Numer. Anal.
17(1), 44-62 (1980)

14. Nielson, G. M.: A method for interpolating scattered data based upon a minimum
norm network. Math. Comput. 40(161), 253-271 (1983)

15. Peters, J.: Smooth interpolation of a mesh of curves. Constr. Approx. 7(1), 221-246
(1991)

16. Vlachkova, K.: Interpolation of convex scattered data in R3 based upon a convex
minimum Lp-norm network. C. R. Acad. Bulg. Sci. 45, 13-15 (1992)

17. Vlachkova, K.: A Newton-type algorithm for solving an extremal constrained in-
terpolation problem. Num. Linear Algebra Appl. 7(3), 133-146 (2000)

18. Vlachkova, K.: Extremal scattered data interpolation using tensor product Bézier
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