
begindocument/before

Interpolation of Convex Scattered data in R3 Using Edge
Convex Minimum L∞-norm Networks

Krassimira Vlachkovaa)

Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria
a)Corresponding author: krassivl@fmi.uni-sofia.bg

Abstract. We consider the extremal problem of interpolation of convex scattered data in R3 by smooth edge convex curve
networks with minimal Lp-norm of the second derivative for 1 < p ≤ ∞. The problem for p = 2 was set and solved by Andersson
et al. (1995). Vlachkova (2019) extended the results in (Andersson et al., 1995) and solved the problem for 1 < p < ∞. The
minimum edge convex Lp-norm network for 1 < p < ∞ is obtained from the solution to a system of nonlinear equations with
coefficients determined by the data. The solution in the case 1 < p < ∞ is unique for strictly convex data. The approach used in
(Vlachkova, 2019) can not be applied to the corressponding extremal problem for p = ∞. In this case the solution is not unique.
Here we establish the existence of a solution to the extremal interpolation problem for p = ∞. This solution is a quadratic spline
function with at most one knot on each edge of the underlying triangulation. We also propose sufficient conditions for solving the
problem for p = ∞.
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INTRODUCTION

Interpolation of scattered data in R3 is an important problem in applied mathematics and finds applications in various
fields such as computer graphics and animation, scientific visualization, medicine (computer tomography), automo-
tive, aircraft and ship design, architecture, and many more. In general the problem can be formulated as follows:
Given a set of points Pi = (xi,yi,zi) ∈ R3, i = 1, . . . ,n, find a bivariate function F(x,y) defined in a certain domain D
containing points Vi, such that F possesses continuous partial derivatives up to a given order and F(xi,yi) = zi. Various
methods for solving this problem were proposed and applied, see [1, 2, 3, 4, 5, 6, 7, 8]. Nielson [9] proposed a three
steps method for solving the problem as follows:

Step 1. Triangulation. Construct a triangulation T of Vi, i = 1, . . .n.
Step 2. Minimum norm network. The interpolant F and its first order partial derivatives are defined on the edges of

T to satisfy an extremal property. The obtained minimum norm network is a cubic curve network, i. e. on every edge
of T it is a cubic polynomial.

Step 3. Interpolation surface. The obtained network is extended to F by an appropriate blending method.
Andersson et al. [10] focused on Step 2 of the above method, namely the construction of the minimum norm

network. The authors gave a new proof of Nielson’s result by using a different approach. They constructed a system of
simple linear curve networks called basic curve networks and then represented the second derivative of the minimum
norm network as a linear combination of these basic curve networks. The new approach allows to consider and handle
the case where the data are convex and we seek a convex interpolant. Andersson et al. formulate the corresponding
extremal constrained interpolation problem of finding a minimum norm network that is convex along the edges of the
triangulation. The extremal network is characterized as a solution to a nonlinear system of equations. The authors
propose a Newton-type algorithm for solving this type of systems. The validity and convergence of the algorithm
were studied further in [11].

Vlachkova [12] extended the results in [10] and solved the extremal unconstrained problem of interpolation of
scattered data by minimum Lp-norms networks for 1 < p < ∞. The minimum Lp-norm network for 1 < p < ∞ is
obtained from the solution to a system of nonlinear equations with coefficients determined by the data. The solution
in the case 1 < p < ∞ is unique. The approach proposed in [12] can not be applied to the case where p = ∞. In this
case, the solution is not unique. Recently, Vlachkova [13] established the existence of a solution for p = ∞ of the
same type as in the case where 1 < p < ∞.

The extremal constrained interpolation problem for 1 < p < ∞ was considered in [14] where the existence and the
uniqueness of the solution in the case of strictly convex data were established and a complete characterization of the



solution using the basic curve networks was presented. The approach used in [14] does not apply in the case where
p = ∞. In this case, the solution is also not unique.

In this paper we consider the extremal constrained interpolation problem for p = ∞ and show the existence of a
solution of a certain type. More precisely, the solution on each edge of the underlying triangulation T is a quadratic
spline function with at most one knot. We also establish a theorem that provides sufficient conditions for solving the
extremal constrained interpolation problem for p = ∞.

PRELIMINARIES AND RELATED WORK

Let n ≥ 3 be an integer and Pi := (xi,yi,zi), i = 1, . . . ,n be different points in R3. We call this set of points data. The
data are scattered1 if the projections Vi := (xi,yi) onto the plane Oxy are different and non-collinear.

Definition 1 A collection of non-overlapping, non-degenerate triangles in R2 is a triangulation of the points Vi, i =
1, . . . ,n, if the set of the vertices of the triangles coincides with the set of the points Vi, i = 1, . . . ,n.

For a given triangulation T there is a unique continuous function L : D→R1 that is linear inside each of the triangles
of T and interpolates the data.

Definition 2 Scattered data in D are convex if there exists a triangulation T of Vi such that the corresponding function
L is convex. The data are strictly convex if they are convex and the gradient of L has a jump discontinuity across each
edge inside D.

Hereafter we assume that the data are convex and T is an associated triangulation of the points Vi, i = 1, . . . ,n. The
set of the edges of the triangles in T is denoted by E. If there is an edge between Vi and Vj in E, it will be referred to
by ei j or simply by e if no ambiguity arises.

Definition 3 A curve network is a collection of real-valued univariate functions { fe}e∈E defined on the edges in E.

With any real-valued bivariate function F defined on D we naturally associate the curve network defined as the
restriction of F on the edges in E, i. e. for e = ei j ∈ E,

fe(t) := F
((

1− t
∥e∥
)
xi +

t
∥e∥

x j,
(
1− t

∥e∥
)
yi +

t
∥e∥

y j

)
,

where 0 ≤ t ≤ ∥e∥ and ∥e∥=
√

(xi − x j)2 +(yi − y j)2.

(1)

Furthermore, according to the context F will denote either a real-valued bivariate function or a curve network defined
by (1). For p, such that 1 < p ≤ ∞, we introduce the following class of smooth interpolants

Fp := {F(x,y) ∈C1(D) |F(xi,yi) = zi, i = 1, . . . ,n, f ′e ∈ AC, f ′′e ∈ Lp, e ∈ E},

and the corresponding class of so-called smooth interpolation edge convex curve networks

Cp(E) :=
{

F|E = { fe}e∈E | F(x,y) ∈ Fp, f ′′e ≥ 0, e ∈ E
}
,

where C1(D) is the class of bivariate functions defined in D which possess continuous first order partial derivatives,
AC is the class of univariate absolutely continuous functions defined in [0,∥e∥], Lp for 1 < p < ∞ is the class of
univariate functions defined in [0,∥e∥] whose p-th power of the absolute value is Lebesgue integrable, and L∞ is
the class of the bounded univariate functions defined in [0,∥e∥]. The smoothness of the interpolation curve network
F = { fe}e∈E ∈ Cp(E) geometrically means that at each point Pi there is a tangent plane to F , where a plane is tangent

1 Note that this definition of scattered data slightly misuses the commonly accepted meaning of the term. It allows data with some structure among
points vi. We have opted to do this in order to cover all cases where our presentation and results are valid.



to the curve network at the point Pi if it contains the tangent vectors at Pi of the curves incident to Pi. Further, Lp-norm
are defined in Cp(E) by

∥F∥p :=

(
∑
e∈E

∫ ∥e∥

0
| fe(t)|pdt

)1/p

, 1 < p < ∞,

∥F∥∞ := max
e∈E

∥ fe∥∞.

We denote the networks of the second derivative of F by F ′′ := { f ′′e }e∈E and consider the following extremal problem:

(Pp) Find F∗ ∈ Cp(E) such that ∥F∗′′∥p = inf
F∈Cp(E)

∥F ′′∥p.

Problem (Pp) is a generalization of the classical univariate extremal problem (P̃p) for interpolation of convex data
in R2 by a univariate convex function with minimal Lp-norm of the second derivative. Hornung [15] considered the
problem (P̃p) for p = 2. Iliev and Pollul [16] considered the case p = ∞ and proved that problem (P̃∞) has a quadratic
spline solution characterized by the existence of a core interval on which the second derivative is the positive part of
a perfect spline and that all solutions agree on core intervals. Iliev and Pollul [17], and Micchelli et al. [18] studied in
detail the problem for 1 < p < ∞.2

For i = 1, . . . ,n, let mi denote the degree of the vertex Vi, i. e. the number of the edges in E incident to Vi.
Furthermore, let {eii1 , . . . ,eiimi

} be the edges incident to Vi listed in clockwise order around Vi. The first edge eii1 is

chosen so that the coefficient λ
(s)
1,i defined below is not zero - this is always possible. A basic curve network Bis is

defined on E for any pair of indices is, such that i = 1, . . . ,n and s = 1, . . . ,mi −2, as follows:

Bis :=


λ
(s)
r,i

(
1− t

∥eiis+r−1∥

)
on eiis+r−1 , r = 1,2,3,

0 ≤ t ≤ ∥eiis+r−1∥
0 on the other edges of E.

The coefficients λ
(s)
r,i , r = 1,2,3, are uniquely determined to sum to one and to form a zero linear combination of the

three unit vectors along the edges eiis+r−1 starting at Vi. Note that basic curve networks are associated with points that
have at least three edges incident to them. We denote by NB the set of pairs of indices is for which a basic curve
network is defined, i. e., NB := {is | mi ≥ 3, i = 1, . . . ,n, s = 1, . . . ,mi −2}.

With each basic curve network Bis for is ∈ NB we associate a number dis defined by

dis =
λ
(s)
1,i

∥eiis∥
(zis − zi)+

λ
(s)
2,i

∥eiis+1∥
(zis+1 − zi)+

λ
(s)
3,i

∥eiis+2∥
(zis+2 − zi),

which reflects the position of the data in the supporting set of Bis.
In [14] a full characterization of the solution to the extremal problem (Pp) for 1 < p < ∞ was provided. Its finding

reduces to the unique solution of a system of equations. The following theorem was established in [14].

Theorem 1 In the case of strictly convex data problem (Pp), 1 < p < ∞, has a unique solution F∗. The second
derivative of the solution F∗′′ has the form

F∗′′ =

(
∑

is∈NB

αisBis

)q−1

+

where 1/p+1/q = 1, (x)+ := max(x,0) and the coefficients αis satisfy the following nonlinear system of equations

∫
E

(
∑

is∈NB

αisBis

)q−1

+

Bkldt = dkl , for kl ∈ NB.

2 Iliev and Pollul [17], and Micchelli et al. [18] considered the more general problem of minimum Lp-norm of the k-th derivative which is
non-negative, k ≥ 2.



MAIN RESULTS

Our main results are presented in the next two theorems. Theorem 2 establishes the existence of a solution to problem
(P∞) of a certain type. Theorem 3 provides sufficient conditions for solving (P∞). It states that if there exists a solution
of the same type as in the case where 1 < p < ∞ (Theorem 1) then it solves problem (P∞).

Theorem 2 Problem (P∞) has a solution whose restriction on every edge e ∈ E is a quadratic spline with at most one
knot in the interval (0,∥e∥).

Theorem 3 Let F∞ ∈ C∞(E) be such that

F ′′
∞ = c

(
∑

is∈NB

αisBis

)0

+

where αis, is ∈ NB, are real numbers, and c > 0. Then F∞ solves problem (P∞).

Remark 1 Coefficients αis are determined up to a constant factor.

Corollary 1 Coefficients c and αis, is ∈ NB, are a solution to the system

∫
E

c

(
∑

is∈NB

αisBis

)0

+

Bkl = dkl , kl ∈ NB. (2)
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