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Abstract. We consider the extremal problem of interpolation of scattered data in R3 by smooth curve networks with minimal
Lp-norm of the second derivative for 1 < p ≤ ∞. The problem for p = 2 was set and solved by Nielson [1]. Andersson et al.
[2] gave a new proof of Nielson’s result by using a different approach. Vlachkova [3] extended the results in [2] and solved the
problem for 1 < p < ∞. The minimum Lp-norm network for 1 < p < ∞ is obtained from the solution to a system of nonlinear
equations with coefficients determined by the data. The solution in the case 1 < p < ∞ is unique. We denote the corresponding
minimum Lp-norm network by Fp. In the case where p = ∞ we establish the existence of a solution of the same type as in the case
where 1 < p < ∞. This solution on each edge of the underlying triangulation is a quadratic spline function with at most one knot.
We denote this solution by F∞ and prove that the minimum Lp-norm networks Fp converge to the minimum L∞-norm network F∞

as p→ ∞.
Keywords: Scattered data interpolation, minimum norm networks, splines.
PACS: 02.60.Ed, 68.35.B-

INTRODUCTION

Interpolation of scattered data in R3 is an important problem in applied mathematics and finds applications in various
fields such as automotive, aircraft and ship design, architecture, archeology, medicine (computer tomography), com-
puter graphics and animation, scientific visualization, and many more. In general the problem can be formulated as
follows: Given a set of points Pi = (xi,yi,zi) ∈R3, i = 1, . . . ,n, find a bivariate function F(x,y) defined in a certain do-
main D containing points Vi, such that F possesses continuous partial derivatives up to a given order and F(xi,yi) = zi.
Various methods for solving this problem were proposed and applied, see [4, 5, 6, 7, 8, 9, 10, 11, 12]. Nielson [1]
proposed a three steps method for solving the problem as follows:

Step 1. Triangulation. Construct a triangulation T of Vi, i = 1, . . .n.
Step 2. Minimum norm network. The interpolant F and its first order partial derivatives are defined on the edges of

T to satisfy an extremal property. The obtained minimum norm network is a cubic curve network, i. e. on every edge
of T it is a cubic polynomial.

Step 3. Interpolation surface. The obtained network is extended to F by an appropriate blending method.
Andersson et al. [2] gave a new proof of Nielson’s result by using a different approach. They construct a system

of simple linear curve networks called basic curve networks and then represent the second derivative of the minimum
norm network as a linear combination of these basic curve networks. Vlachkova [3] extended the results in [2] and
solved the problem of interpolation of scattered data by minimum Lp-norms networks for 1 < p < ∞. The minimum
Lp-norm network for 1 < p < ∞ is obtained from the solution to a system of nonlinear equations with coefficients
determined by the data. The solution in the case 1< p<∞ is unique. We denote the corresponding minimum Lp-norm
network by Fp.

In this paper we consider the case p = ∞ and establish the existence of a solution of the same type as in the case
where 1 < p < ∞. This solution on each edge of the underlying triangulation is a perfect quadratic spline function
with at most one knot. We denote this solution by F∞.

The following question naturally arises. Does the solutions for 1 < p < ∞ converge to F∞ as p→ ∞? Here we
answer positively to this question.

PRELIMINARIES AND RELATED WORK

Let n≥ 3 be an integer and Pi := (xi,yi,zi), i = 1, . . . ,n be different points in R3. We call this set of points data. The
data are scattered1 if the projections Vi := (xi,yi) onto the plane Oxy are different and non-collinear.

1 Note that this definition of scattered data slightly misuses the commonly accepted meaning of the term. It allows data with some structure among
points vi. We have opted to do this in order to cover all cases where our presentation and results are valid.
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Definition 1 A collection of non-overlapping, non-degenerate triangles in R3 is a triangulation of the points Vi, i =
1, . . . ,n, if the set of the vertices of the triangles coincides with the set of the points Vi, i = 1, . . . ,n.

Hereafter we assume that a triangulation T of the points Vi, i = 1, . . . ,n, is given and fixed. The union of all triangles
in T is a polygonal domain which we denote by D. In general D is a collection of polygons with holes. The set of the
edges of the triangles in T is denoted by E. If there is an edge between Vi and Vj in E, it will be referred to by ei j or
simply by e if no ambiguity arises.

Definition 2 A curve network is a collection of real-valued univariate functions { fe}e∈E defined on the edges in E.

With any real-valued bivariate function F defined on D we naturally associate the curve network defined as the
restriction of F on the edges in E, i. e. for e = ei j ∈ E,

fe(t) := F
((

1− t
‖e‖
)
xi +

t
‖e‖

x j,
(
1− t
‖e‖
)
yi +

t
‖e‖

y j

)
,

where 0≤ t ≤ ‖e‖ and ‖e‖=
√

(xi− x j)2 +(yi− y j)2.

(1)

Furthermore, according to the context F will denote either a real-valued bivariate function or a curve network defined
by (1). For p, such that 1 < p≤ ∞, we introduce the following class of smooth interpolants

Fp := {F(x,y) ∈C1(D) |F(xi,yi) = zi, i = 1, . . . ,n, f ′e ∈ AC, f ′′e ∈ Lp, e ∈ E},

where C1(D) is the class of bivariate functions defined in D which possess continuous first order partial derivatives, AC
is the class of univariate absolutely continuous functions defined in [0,‖e‖], Lp for 1 < p < ∞ is the class of univariate
functions defined in [0,‖e‖] whose p-th power of the absolute value is Lebesgue integrable, and L∞ is the class of
bounded univariate functions defined in [0,‖e‖]. The restrictions on E of the functions in Fp form the corresponding
class of so-called smooth interpolation curve networks

Cp(E) :=
{

F|E = { fe}e∈E | F(x,y) ∈Fp, e ∈ E
}
. (2)

The smoothness of the interpolation curve network F = { fe}e∈E ∈ Cp(E) geometrically means that at each point Pi
there is a tangent plane to F , where a plane is tangent to the curve network at the point Pi if it contains the tangent
vectors at Pi of the curves incident to Pi. Further, Lp-norm are defined in Cp(E) by

‖F‖p :=

(
∑
e∈E

∫ ‖e‖
0
| fe(t)|pdt

)1/p

, 1 < p < ∞,

‖F‖∞ := max
e∈E
‖ fe‖∞.

We denote the networks of the second derivative of F by F ′′ := { f ′′e }e∈E and consider the following extremal problem:

(Pp) Find F∗ ∈ Cp(E) such that ‖F∗′′‖p = inf
F∈Cp(E)

‖F ′′‖p.

Problem (Pp) is a generalization of the classical univariate extremal problem (P̃p) for interpolation of data in R2 by a
univariate function with minimal Lp-norm of the second derivative. Favard [13] considered problem (P̃p) in the case
where p = ∞ and later Karlin [14] showed that there exists a perfect spline (not necessarily unique) which is a solution
to the problem.2 For p = 2 Holladay [15] proved that the natural interpolating cubic spline is the unique solution to
(P̃2). C. de Boor [16] studied in detail and generalized Favard’s result [13] for 1 < p≤∞. We note that Nielson’s idea
to obtain the minimum norm network is similar to Holladay’s proof [15].

For i = 1, . . . ,n, let mi denote the degree of the vertex Vi, i. e. the number of the edges in E incident to Vi.
Furthermore, let {eii1 , . . . ,eiimi

} be the edges incident to Vi listed in clockwise order around Vi. The first edge eii1 is

2 Favard [13] and Karlin [14] studied the more general problem of minimum Lp-norm of the k-th derivative, k ≥ 1.
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chosen so that the coefficient λ
(s)
1,i defined below is not zero - this is always possible. A basic curve network Bis is

defined on E for any pair of indices is, such that i = 1, . . . ,n and s = 1, . . . ,mi−2, as follows:

Bis :=


λ
(s)
r,i

(
1− t

‖eiis+r−1‖

)
on eiis+r−1 , r = 1,2,3,

0≤ t ≤ ‖eiis+r−1‖
0 on the other edges of E.

The coefficients λ
(s)
r,i , r = 1,2,3, are uniquely determined to sum to one and to form a zero linear combination of the

three unit vectors along the edges eiis+r−1 starting at Vi. Note that basic curve networks are associated with points that
have at least three edges incident to them. We denote by NB the set of pairs of indices is for which a basic curve
network is defined, i. e., NB := {is | mi ≥ 3, i = 1, . . . ,n, s = 1, . . . ,mi−2}.

With each basic curve network Bis for is ∈ NB we associate a number dis defined by

dis =
λ
(s)
1,i

‖eiis‖
(zis − zi)+

λ
(s)
2,i

‖eiis+1‖
(zis+1 − zi)+

λ
(s)
3,i

‖eiis+2‖
(zis+2 − zi),

which reflects the position of the data in the supporting set of Bis.
In [3] a full characterization of the solution Fp to the extremal problem (Pp) for 1 < p < ∞ was provided. Finding

of Fp reduces to the unique solution of a system of equations. Further, for simplicity we use the notation (x)r
± :=

|x|rsign(x), r ∈ R, x ∈ R. The following two theorems were proved in [3].

Theorem 1 The extremal problem (Pp) has always a unique solution for 1 < p < ∞.

Theorem 2 Curve network Fp ∈Cp(E) solves problem (Pp) for 1 < p < ∞ if and only if F ′′p =
(
∑is∈NB αisBis

)q−1
± . The

coefficients αis are the unique solution to the following system of equations

∫
E

(
∑

is∈NB

αisBis

)q−1

±

Bkldt = dkl , kl ∈ NB. (3)

MAIN RESULTS

In Theorem 1 we proved that problem (Pp) for 1 < p < ∞ has always a unique solution, and in Theorem 2 we
characterized this solution using Lagrange multipliers. This approach can not be applied to the case where p = ∞. By
a different approach used by de Boor [16] in the univariate case, in the next theorem we establish the existence of a
solution to (P∞) and determine its form.

Theorem 3 Problem (P∞) has a solution F∞ ∈ C∞(E) such that

F ′′∞ = c

(
∑

is∈NB

αisBis

)0

±

a. e. on E

provided (∑is∈NB αisBis)|e 6≡ 0 for every e ∈ E. Coefficients αis are real numbers and c > 0.

Remark 1 Coefficients αis are determined up to a constant factor.

Corollary 1 Coefficients c and αis, is ∈ NB, are a solution to the system

∫
E

c

(
∑

is∈NB

αisBis

)0

±

Bkl = dkl , kl ∈ NB. (4)

It is natural to ask the following question. Does the solutions Fp for 1 < p < ∞ converge as p→ ∞ and what is the
limit? The next theorem gives answer to this question.

Theorem 4 The minimum Lp-norm networks Fp converge to the minimum L∞-norm network F∞ as p→ ∞.
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NUMERICAL EXPERIMENTS

To find the minimum Lp-norm networks for 1 < p < ∞ we have to solve system (3) which is nonlinear except in the
case where p = 2 when it is linear. We have implemented a Newton type algorithm [17] to solve this type of systems.
We use Mathematica package to visualize the extremal curve networks Fp. Here we present an example from our
experimental work.

Example 1 We consider data obtained from a regular triangular pyramid. We have n = 4, V1 = (−1/2,−
√

3/6),
V2 = (1/2,−

√
3/6), V3 = (0,

√
3/3), V4 = (0,0), and zi = 0, i = 1,2,3, z4 = −1/2. The set of indices defining the

edges of the corresponding triangulation T is NB = {12,23,31,41,42,43}. We have mi = 3 for i = 1, . . . ,4 and four
basic curve networks Bis, i = 1, . . . ,4, s = 1, are defined. The exact solution for p = ∞ can be found directly by solving
system (4). It is

f12(t) = f23(t) = f31(t) = 3(t2− t)/2, 0≤ t ≤ 1; f j4(t) = 3t2/2−
√

3t, 0≤ t ≤
√

3/3, j = 1,2,3.

In Fig. 1 the minimum Lp-norms network Fp, and the corresponding Lp-norms of the second derivatives ‖F ′′p ‖p for
p = 2, 6, and ∞, are shown.

p = 2, ‖F ′′2 ‖2 = 4.72119 p = 6, ‖F ′′6 ‖6 = 3.40846 p = ∞, ‖F ′′∞‖∞ = 3.

FIGURE 1. Example 1: The minimum Lp-norm networks Fp, and the corresponding Lp-norms ‖F ′′p ‖p for p = 2, 6, and ∞.
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