
AIP Conference Proceedings 2183, 070028 (2019); https://doi.org/10.1063/1.5136190 2183, 070028

© 2019 Author(s).

Interpolation of convex scattered data in

ℝ3 using edge convex minimum Lp-norm
networks, 1 < p < ∞
Cite as: AIP Conference Proceedings 2183, 070028 (2019); https://doi.org/10.1063/1.5136190
Published Online: 06 December 2019

Krassimira Vlachkova

https://images.scitation.org/redirect.spark?MID=176720&plid=1007002&setID=379066&channelID=0&CID=326227&banID=519800492&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=b42d6b27eabc9a5ab51f86399ebf2e6a0e3c8ca3&location=
https://doi.org/10.1063/1.5136190
https://doi.org/10.1063/1.5136190
https://aip.scitation.org/author/Vlachkova%2C+Krassimira
https://doi.org/10.1063/1.5136190
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5136190


Interpolation of Convex Scattered Data in R3 Using Edge
Convex Minimum Lp-Norm Networks, 1 < p < ∞

Krassimira Vlachkova

Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria

krassivl@fmi.uni-sofia.bg

Abstract. We consider the extremal problem of interpolation of scattered data in R3 by smooth curve networks with minimal
Lp-norm of the second derivative for 1 < p < ∞. The problem for p = 2 was set and solved by Nielson [7]. Andersson et al.
[1] gave a new proof of Nielson’s result by using a different approach. It allowed them to set and solve the constrained extremal
problem of interpolation of convex scattered data in R3 by minimum L2-norm networks that are convex along the edges of an
associated triangulation. Partial results for the unconstrained and the constrained problems were announced without proof in [8].
The unconstrained problem for 1 < p < ∞ was fully solved in [10]. Here we present complete characterization of the solution to
the constrained problem for 1 < p < ∞.
Keywords: Extremal scattered data interpolation, Minimum norm networks.
PACS: 02.60.-x, 02.60.Ed

INTRODUCTION

Scattered data interpolation is a fundamental problem in approximation theory and computer aided geometric design.
It finds applications in a variety of fields such as automotive, aircraft and ship design, architecture, medicine, computer
graphics, and more. Different methods and approaches for solving the problem were proposed and discussed, see, e. g.,
the surveys [4–6], and also [2, 3].

Consider the following problem: Given scattered data (xi, yi, zi) ∈ R3, i = 1, . . . , n, that is, the points Vi = (xi, yi)
are different and non-collinear, find a bivariate function F(x, y) defined in a certain domain D containing the points
Vi, such that F possesses continuous partial derivatives up to a given order and F(xi, yi) = zi.

Nielson [7] proposed a three-steps method for solving the problem as follows:

Step 1. Triangulation. Construct a triangulation T of Vi, i = 1, . . . , n. The domain D is the union of all triangles
in T .

Step 2. Minimum norm network. The interpolant F and its first order partial derivatives are defined on the edges
of T to satisfy an extremal property. The resulting minimum norm network is a cubic curve network, i. e. on every
edge of T it is a cubic polynomial.

Step 3. Interpolation surface. The network obtained is extended to F by an appropriate blending method.

Andersson et al. [1] paid special attention to Step 2 of the above method, namely the construction of the minimum
norm network. Using a different approach, the authors gave a new proof of Nielson’s result. They constructed a
system of simple linear curve networks called basic curve networks and then represented the second derivative of the
minimum norm network as a linear combination of these basic curve networks. The new approach allows to consider
and handle the case where the data are convex and we seek a convex interpolant. Andersson et al. formulate the
corresponding extremal constrained interpolation problem of finding a minimum norm network that is convex along
the edges of the triangulation. The extremal network is characterized as a solution of a nonlinear system of equations.
The authors propose a Newton-type algorithm for solving this type of systems. The validity and convergence of the
algorithm were studied further in [9].

The problem of interpolation of scattered data by minimum Lp-norms networks for 1 < p < ∞ was considered
in [8] where sufficient conditions for the solution were formulated without proof for both the unconstrained and the
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constrained problems. Recently, the unconstrained problem for 1 < p < ∞was fully solved in [10] where the existence
and the uniqueness of the solution were proved and a complete characterization of the unique solution was presented.

In this paper we consider the constrained problem for 1 < p < ∞. We prove the existence and the uniqueness of
the solution in the case of strictly convex data and provide its complete characterization using the basic curve networks
defined in [1].

PRELIMINARIES

Let n ≥ 3 be an integer and (xi, yi, zi), i = 1, . . . , n be different points in R3. We call this set of points data. The data
are scattered if the projections Vi := (xi, yi) onto the plane Oxy are different and non-collinear.

Definition 1 A collection of non-overlapping, non-degenerate triangles in Oxy is a triangulation of the points
Vi, i = 1, . . . , n, if the set of the vertices of the triangles coincides with the set of the points Vi, i = 1, . . . , n.

For a given triangulation T there is a unique continuous function L : D → R1 that is linear inside each of the
triangles of T and interpolates the data.

Definition 2 Scattered data in D are convex if there exists a triangulation T of Vi such that the corresponding
function L is convex. The data are strictly convex if they are convex and the gradient of L has a jump discontinuity
across each edge inside D.

Hereafter we assume that the data are convex and T is an associated triangulation of the points Vi, i = 1, . . . , n. The
set of the edges of the triangles in T is denoted by E. If there is an edge between Vi and Vj in E, it will be referred to
by ei j or simply by e if no ambiguity arises.

Definition 3 A curve network is a collection of real-valued univariate functions { fe}e∈E defined on the edges in E.

With any real-valued bivariate function F defined on D we naturally associate the curve network defined as the
restriction of F on the edges in E, i. e. for e = ei j ∈ E,

fe(t) := F
((

1 − t
‖e‖
)
xi +

t
‖e‖ x j,

(
1 − t
‖e‖
)
yi +

t
‖e‖ y j

)
, where 0 ≤ t ≤ ‖e‖ and ‖e‖ =

√
(xi − x j)2 + (yi − y j)2. (1)

Furthermore, according to the context F will denote either a real-valued bivariate function or a curve network defined
by (1). For p, such that 1 < p < ∞, we introduce the following class of smooth interpolants

Fp :=
{
F(x, y) | F(xi, yi) = zi, i = 1, . . . , n, ∂F/∂x, ∂F/∂y ∈ C(D), f ′e ∈ AC[0,‖e‖], f ′′e ∈ Lp

[0,‖e‖], e ∈ E
}

and the corresponding class of so-called smooth interpolation edge convex curve networks

Cp(E) :=
{
F|E = { fe}e∈E | F(x, y) ∈ Fp, f ′′e ≥ 0, e ∈ E

}
,

where C(D) is the class of bivariate continuous functions defined in D, AC[0,‖e‖] is the class of univariate absolutely
continuous functions defined in [0, ‖e‖], and Lp

[0,‖e‖] is the corresponding Lebesgue space of univariate functions de-
fined in [0, ‖e‖].

The smoothness of the interpolation curve network F = { fe}e∈E ∈ Cp(E) geometrically means that if we consider
the graphs of functions { fe}e∈E as curves in R3 then at every point Vi, i = 1, . . . , n, they have a common tangent plane.

The Lp-norm is defined in Cp(E) by

‖F‖p :=

⎛⎜⎜⎜⎜⎜⎝
∑
e∈E

∫ ‖e‖
0
| fe(t)|pdt

⎞⎟⎟⎟⎟⎟⎠
1/p

, 1 < p < ∞.

We denote the networks of the second derivative of F by F′′ := { f ′′e }e∈E and consider the following extremal problem:

(Pp) Find F∗ ∈ Cp(E) such that ‖F∗′′‖ = inf
F∈Cp(E)

‖F′′‖.
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FIGURE 1. The basic curve networks for vertex Vi, deg(Vi) = 4

For i = 1, . . . , n, let mi denote the degree of the vertex Vi, i. e. the number of the edges in E incident to Vi.
Furthermore, let {eii1 , . . . , eiimi

} be the edges incident to Vi listed in clockwise order around Vi. The first edge eii1 is
chosen so that the coefficient λ(s)

1,i defined below is not zero - this is always possible. A basic curve network Bis is
defined on E for any pair of indices is, such that i = 1, . . . , n and s = 1, . . . ,mi − 2, as follows (see Fig. 1):

Bis :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
λ(s)

r,i

(
1 − t

‖eiis+r−1 ‖
)

on eiis+r−1 , r = 1, 2, 3,

0 ≤ t ≤ ‖eiis+r−1‖
0 on the other edges of E.

The coefficients λ(s)
r,i , r = 1, 2, 3, are uniquely determined to sum to one and to form a zero linear combination of

the three unit vectors along the edges eiis+r−1 starting at Vi. Note that basic curve networks are associated with points
that have at least three edges incident to them. We denote by NB the set of pairs of indices is for which a basic curve
network is defined, i. e., NB := {is | mi ≥ 3, i = 1, . . . , n, s = 1, . . . ,mi − 2}.

With each basic curve network Bis for is ∈ NB we associate a number dis defined by

dis =
λ(s)

1,i

‖eiis‖
(zis − zi) +

λ(s)
2,i

‖eiis+1‖
(zis+1 − zi) +

λ(s)
3,i

‖eiis+2‖
(zis+2 − zi),

which reflects the position of the data in the supporting set of Bis.

MAIN RESULT

Andersson et al. [1] proved a theorem that characterizes the solution to (Pp) for p = 2 by using results from the theory
of convex functionals in Hilbert spaces. This approach can not be generalized directly for arbitrary p, 1 < p < ∞, due
to the fact that Lp are not Hilbert spaces for p � 2. We apply a different approach and obtain the following theorem
which provides a full characterization of the solution to (Pp).

Theorem 1 In the case of strictly convex data problem (Pp), 1 < p < ∞, has a unique solution F∗. The second
derivative of the solution F∗′′ has the form

F∗′′ =

⎛⎜⎜⎜⎜⎜⎜⎝
∑

is∈NB

αisBis

⎞⎟⎟⎟⎟⎟⎟⎠
q−1

+

where 1/p + 1/q = 1, (x)+ := max(x, 0) and the coefficients αis satisfy the following nonlinear system of equations

∫
E

⎛⎜⎜⎜⎜⎜⎜⎝
∑

is∈NB

αisBis

⎞⎟⎟⎟⎟⎟⎟⎠
q−1

+

Bkldt = dkl, for kl ∈ NB.
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FIGURE 2. Triangulation T and the corresponding solution to (P2) for n = 25 and data sampled from F(x, y) = 5 ∗
exp ((x − 0.5)2 + (y − 0.5)2). The computation and visualization are obtained using Mathematica package.

NUMERICAL EXPERIMENTS

Numerical experiments are presented and visualized to illustrate and support our results. The computation and visual-
ization are obtained using Mathematica package. An example for the case where p = 2 and n = 25 is shown in Fig. 2.
The corresponding data are sampled from the function F(x, y) = 5 ∗ exp ((x − 0.5)2 + (y − 0.5)2).
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