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Abstract. We consider the problem of interpolation of scattered data in R
3 and propose a solution based on Nielson’s minimum

norm network and triangular Bézier patches. Our algorithm applies splitting to all triangles of an associated triangulation and
constructs G1-continuous bivariate interpolant consisting of quartic triangular Bézier patches. The algorithm is computationally
simple and produces visually pleasant smooth surfaces. We have created a software package for implementation, 3D visualization
and comparison of our algorithm and the known Shirman and Séquin’s method which is also based on splitting and quartic triangular
Bézier patches. The results of our numerical experiments are presented and analysed.

INTRODUCTION

Interpolation of data points in R
3 by smooth surface is an important problem in applied mathematics which finds

applications in various areas such as medicine, architecture, archeology, computer graphics, bioinformatics, scientific
visualization, etc. In general the problem can be formulated as follows: Given a set of points di = (xi,yi,zi) ∈ R

3,
i = 1, . . . ,n, find a bivariate function F(x,y) defined in a certain domain D containing points vi = (xi,yi), such that F
possesses continuous partial derivatives up to a given order and F(xi,yi) = zi.

Various methods for solving this problem were proposed and applied, see [1, 2, 3, 4]. A standard approach to solve
the problem consists of two steps, see [1]:

1. Construct a triangulation T = T (v1, . . . ,vn);

2. For every triangle in T construct a surface (patch) which interpolates the data at the three vertices of T .

The interpolation surface constructed in Step 2 is usually polynomial or piecewise polynomial. Typically, the
patches are computed with a priori prescribed normal vectors at the data points. G1 or G2 smoothness of the resulting
surface is achieved either by increasing the degree of the patches, or by the so called splitting. Splitting was originally
proposed by Clough and Tocher [5] and further developed by Percell [6] and Farin [7] for solving different problems.
In practice using patches of least degree and splitting is preferable since it is computationally simple and efficient.

Shirman and Séquin [8, 9] construct a G1 smooth surface consisting of quartic triangular Bézier surfaces (TBS).
Their method assumes that the normal vectors at points di, i = 1, . . . ,n, are given as part of the input. Shirman
and Séquin construct a smooth cubic curve network defined on the edges of T , first, and then degree elevate it to
quartic. This increases the degrees of freedom and allows them to connect smoothly the adjacent Bézier patches.
Next, they apply splitting where for each triangle in T a macro-patch consisting of three quartic Bézier sub-patches
is constructed. To compute the inner Bézier control points closest to the boundary of the macro-patch, Shirman and
Séquin use a method proposed by Chiyokura and Kimura [10, 11]. The interpolation surfaces constructed by Shirman
and Séquin’s algorithm often suffer from unwanted bulges, tilts, and shears as pointed out by the authors in [12] and
more recently by Hettinga and Kosinka in [13].

Nielson [14] proposes a method which computes a smooth interpolation curve network defined on the edges of T so
as to satisfy an extremal property and then extends it to a smooth interpolation surface using an appropriate blending
method based on convex combination schemes. The interpolation curve network is called minimum norm network
(MNN) and is cubic. Nielson’s interpolant is a rational function on every triangle in T . A significant advantage of
Nielson’s method is that the normal vectors at the data points are obtained through the computation of the MNN.

In this paper we propose an algorithm for interpolation of data in R
3 which improves on Shirman and Séquin’s

approach in two ways. First, we use Nielson’s MNN and second, we apply different strategy for computation of the
control points. During the computation of control points closest to the boundary of a macro-patch we adopt additional
criteria so that to avoid unwanted distortions and twists which appear in surfaces constructed by Shirman and Séquin’s
method. As a result, the quality of the resulting surfaces is improved. Furthermore, Shirman and Séquin impose an
additional condition that the three quartic curves defined on the common edges of the three sub-patches are degree
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elevated cubic curves. This condition is not necessary to obtain G1-continuity across the common edges of the sub-
patches. We apply different criterion for choosing the inner points of the sub-patches and believe that our choice
would facilitate the construction of macro-patches that are convex in addition.

We implemented a software package for construction and 3D visualization of interpolation surfaces obtained by
both Shirman and Séquin’s algorithm and our algorithm. We tested the two algorithms extensively using data of
increasing complexity and analysed the results with respect to different criteria.

RELATED WORK

Let n ≥ 3 be an integer and di := (xi,yi,zi), i = 1, . . . ,n be different points in R
3. We call this set of points data and

assume that the projections vi := (xi,yi) onto the plane Oxy are different and non-collinear.

A triangulation T of points vi is a collection of non-overlapping, non-degenerate closed triangles in Oxy such that
the set of the vertices of the triangles coincides with the set of points vi. Hereafter we assume that a triangulation T
of the points vi, i = 1, . . . ,n, is given and fixed.

Nielson’s MNN

Furthermore, for the sake of simplicity, we assume that the domain D formed by the union of the triangles in T is
connected. In general D is a collection of polygons with holes.

The set of the edges in T is denoted by E. If there is an edge between vi and v j in E, it will be referred to by ei j or
simply by e if no ambiguity arises.

A curve network is a collection of real-valued univariate functions { fe}e∈E defined on the edges in E. With any
real-valued bivariate function F defined on D we naturally associate the curve network defined as the restriction of F
on the edges in E, i.e. for e = ei j ∈ E,

fe(t) :=F
((

1− t
‖e‖

)
xi+

t
‖e‖ x j,

(
1− t

‖e‖
)
yi+

t
‖e‖ y j

)
, where 0≤ t ≤‖e‖ and ‖e‖=

√
(xi − x j)2 +(yi − y j)2. (1)

Furthermore, according to the context F will denote either a real-valued bivariate function or a curve network defined
by (1). We introduce the following class of smooth interpolants defined on D

F :=
{

F(x,y) ∈C(D) |F(xi,yi) = zi, i = 1, . . . ,n, ∂F/∂x,∂F/∂y ∈C(D), f ′e ∈ AC, f ′′e ∈ L2, e ∈ E
}

and the corresponding class of so-called smooth interpolation curve networks

C (E) :=
{

F|E = { fe}e∈E | F(x,y) ∈ F
}
,

where C(D) is the class of bivariate continuous functions defined in D, AC is the class of univariate absolutely contin-
uous functions defined in [0,‖e‖], and L2 is the class of univariate functions defined in [0,‖e‖] whose second power is
Lebesgue integrable.

The smoothness of the interpolation curve network F ∈ C (E) geometrically means that at each point di there is a
tangent plane to F , where a plane is tangent to the curve network at a point di if it contains the tangent vectors at di
of the curves incident to di.

The L2-norm is defined in C (E) by ‖F‖L2(T ) := ‖F‖ =
(

∑e∈E
∫ ‖e‖

0 | fe(t)|2dt
)1/2

. We denote the networks of the

second derivative of F by F ′′ := { f ′′e }e∈E and consider the following extremal problem:

(P) Find F∗ ∈ C (E) such that ‖F∗′′‖= inf
F∈C (E)

‖F ′′‖.

Nielson [14] showed that (P) possesses a unique solution (MNN). The MNN is obtained by solving a linear system
of equations.
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Shirman and Séquin’s method

This method assumes that the normal vectors at the data points di, i = 1, . . . ,n, are given a priori. First, Shirman and
Séquin construct smooth interpolation cubic curve network defined on the edges of T which is compatible with the
normal vectors given and degree elevate it to quartic. Then, for each triangle in T they apply splitting procedure which
constructs three triangular Bézier patches (sub-patches) that possess a common vertex and form a G1-continuous
polynomial surface (macro-patch) defined in the triangle. The Bézier patches are computed through computation of
their control points as shown in Fig. 1a. We use the following notation.

� vertices of the sub-patches;
• inner control points on the boundary of the macro-patch;
� inner control points of the three inner boundary curves of the sub-patches;
◦ inner control points of the sub-patches.
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ẑ2q̂

1

1
q̂
2

1

m1 m2c1 c2

a. b.

FIGURE 1. a. Construction of a G1-continuous Bézier macro-patch by splitting to three sub-patches; b. A sufficient condition for
G1 continuity between T and its neighbouring patch is that the four shaded quadrilaterals are planar

Shirman and Séquin’s Algorithm 1 below takes a triangle in T and the degree-elevated quartic boundary control
points of the corresponding macro-patch and computes 19 control points of the three G1-continuous quartic Bézier
sub-patches.

Algorithm 1
Step 1. Compute the control points closest to the boundary of the macro-patch :

1.1 Points qi
1, i = 1,2,3,are centers of the three small triangles with vertices •�•.

1.2 Then points zi, i = 1, . . . ,6,are computed using Chiyokura and Kimura’s method [10, 11].

Step 2. Compute points q1
2 =

1
3 (q

1
1 + z1 + z6), q2

2 =
1
3 (q

2
1 + z2 + z3), q3

2 =
1
3 (q

3
1 + z4 + z5).

Step 3. Compute points pi = 2qi
2 − 4

3 qi
1 +

1
3 qi

0, i = 1,2,3.

Step 4. Compute the splitting point z = 1
3 (p1 +p2 +p3).

Step 5. Compute points qi
3 =

3
4 pi +

1
4 z, i = 1,2,3.

Step 6. Compute points x1 =
3
2 (−q1

3 +q2
3 +q3

3)− 1
2 (−q1

2 +q2
2 +q3

2), x2 =
3
2 (q

1
3 −q2

3 +q3
3)− 1

2 (q
1
2 −q2

2 +q3
2),

x3 =
3
2 (q

1
3 +q2

3 −q3
3)− 1

2 (q
1
2 +q2

2 −q3
2).
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OUR ALGORITHM

In this section we propose our algorithm to construct G1-continuous interpolation surface consisting of quartic TBP.
First, we compute the MNN and then degree elevate it to quartic. Then for each triangle in T we apply splitting and
construct three triangular Bézier sub-patches with a common vertex which form a G1-continuous macro-patch defined
in the triangle.

Let τ be a triangle in T and T be the corresponding macro-patch. We compute the control points of the three
Bézier sub-patches of T consecutively in four layers as shown in Fig. 1a. The first layer consists of inner control
points closest to the boundary of T . The last fourth layer contains of single point z. This point z is the splitting point
and will be computed as a center of the triangle with vertices in the previous third layer.

Computing the control points in the first layer. There are three points of type � and six points of type ◦ in this
layer, see Fig. 1a. First, we compute points of type � as centers of the three small triangles with vertices •�• on the
boundary of the macro-patch. Then we compute the points zi, i = 1,2, of type ◦ as follows.

Let the corresponding edge of τ be inner for T and q̂i
1, ẑi, i = 1,2, be the corresponding control points of the

neighbouring patch, see Fig. 1b. A sufficient condition for G1 continuity between the two patches is that the four
shaded quadrilaterals in Fig. 1b. are planar. We compute the following points.

z′i = q1
1 + ci −m1, ẑ′i = q̂1

1 + ci −m1, z′′i = q2
1 + ci −m2, ẑ′′i = q̂2

1 + ci −m2,

ai = (1− i
3
)z′i +

i
3

z′′i , âi = (1− i
3
)ẑ′i +

i
3

ẑ′′i , i = 1,2, (2)

where ci, i = 1,2, are control points of the cubic curve defined on the common edge of τ and its neighbouring triangle,
and mi, i = 1,2, are the intersection points of the diagonals of the quadrilaterals q1

0q1
1•q̂1

1 and •q2
1q2

0q̂2
1, respectively,

as shown in Fig. 1b.
Let zi = (ξi,ηi,ζi) and ẑi = (ξ̂i, η̂i, ζ̂i). We choose ξi,ηi and ξ̂i, η̂i to be equal to the corresponding coordinates of

ai and âi, respectively, i = 1,2. In this way the projections of zi, i = 1,2, onto Oxy lie inside τ . Hence, we avoid

unwanted twisting and tilting of the patch. We compute the third coordinates ζi, ζ̂i so that ζi = ζ̂i and zi, ẑi, ci to be
collinear, i = 1,2. In this way we avoid unwanted oscillations between the adjacent patches.

In the case where the corresponding edge of τ is boundary for T , i.e. there is no neighbouring patch of T , we
compute zi, i = 1,2 as follows.

r′i = q1
1 −q1

0 + ci, r′′i = q2
1 −q2

0 + ci, zi = (1− i
3
)r′i +

i
3

r′′i , i = 1,2. (3)

The rest of the points zi, i = 3, . . . ,6, are computed analogously.
Computing the control points in the second and third layers. Now we already know the control points of type � and

type • on the boundary of the macro-patch and control points �,◦ in the first layer. Let us consider an inner boundary
curve, e.g. the curve with control points q1

i ,z, i = 0, . . . ,3, see Fig. 1a. We have to compute the remaining control
points so as to satisfy the G1-continuity conditions across that curve. Hence, q1

2 is a center of the triangle z1q1
1z6, and

q1
3 is a center of the triangle x3q1

2x2. Now suppose that we know points x1,x2,x3 in the second layer. Then points

q1
3,q2

3,q3
3 in the third layer are

q1
3 = (q1

2 +x2 +x3)/3, q2
3 = (q2

2 +x1 +x3)/3, q3
3 = (q3

2 +x1 +x2)/3.

Finally, the splitting point is z := 1
3 (q

1
3 +q2

3 +q3
3).

It remains to compute the three points x1,x2,x3. They provide three degrees of freedom which can be used for
example to control the shape of the surface. In [8, 9] Shirman and Séquin use the condition that the three quartic
curves defined on the inner edges are degree elevated cubic curves as it is for the boundary curves of the macro-patch.
This condition is not necessary for G1-continuity between two sub-patches and hence we do not need to impose it.
We compute points x1,x2,x3 as mid-points of the edges of the triangle q1

2q2
2q3

2 as follows.

x1 = (q2
2 +q3

2)/2, x2 = (q1
2 +q3

2)/2, x3 = (q1
2 +q2

2)/2.

Then the control points in second, third, and fourth layers become co-planar. We believe that this choice of x1,x2,x3

will be useful when we try to construct a simple macro-patch which is convex in addition.
Algorithm 2 below takes a triangle τ in T and the degree-elevated quartic boundary control points of the corre-

sponding patch T and computes 19 control points of the three G1-continuous quartic Bézier sub-patches.
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Algorithm 2
Step 1. Compute the control points in the first layer:

1.1 Points of type � are centers of the three small triangles with vertices •�•.
1.2 Then points of type ◦ are computed as described in (2) and (3).

Step 2. Compute the control points in the second layer:
2.1 Points of type � are centers of the three small triangles with vertices ◦�◦ in the first layer.
2.2 Then points of type ◦ are mid-points of the segments with vertices of type � in the second layer.

Step 3. Compute the control points in the third layer: The three points
of type � are centers of the small triangles with vertices ◦�◦ in the second layer.

Step 4. Compute the splitting point of type � as a center of the triangle with vertices � in the third layer.

EXAMPLE

We implemented our Algorithm 2 as a web application using HTML, JavaScript, and the open source library ������

[15]. The advantages of using ������ are the options to display the coordinate system and the coordinates of the
points when the cursor is placed on them, and to control the surfaces displayed. To demonstrate the results of our
work we present here a simple example that clearly shows the typical differences between the surfaces produced by
Shirman and Séquin’s and our algorithms. As input for both algorithms we use the MNN for the data given.

Example 1 We consider data obtained from a regular triangular pyramid. We have N = 4, v1 = (−1/2,−√
3/6),

v2 = (1/2,−√
3/6), v3 = (0,

√
3/3), v4 = (0,0), and zi = 0, i = 1,2,3, z4 = −1. The corresponding MNN is shown

in Fig. 3. The triangulation and the corresponding Shirman and Séquin’s surface are shown in Fig. 3a. The surface
generated by our Algorithm 2 and the triangulation are shown in Fig. 3b.

FIGURE 2. The MNN for the data in Example 1

CONCLUSION AND FUTURE WORK

In this paper we have proposed a method for constructing a G1-continuous interpolation surface that consists of
triangular quartic Bézier patches based on the MNN construction on the edges of the underlying triangulation. We
have tested our method extensively and have witnessed various advantages over the existing methods. A promising
approach for further improvement is to identify a smaller, possibly minimal, subset of T where splitting is to be done
so that a smooth interpolant can be constructed. It is known that splitting decreases the smoothness of the resulting
surface and hence, it would be advantageous to minimize the number of triangles where splitting is done.
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a. b.

FIGURE 3. Comparison of the two surfaces for the data in Example 1: a. The surface generated using Algorithm 1 (Shirman and
Séquin); b. The surface generated using our Algorithm 2
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