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Abstract. We consider the problem of interpolation of data inR3 and propose a solution based on Nielson’s minimum norm network
and triangular Bézier patches. Our algorithm uses splitting and constructs G1-continuous bivariate interpolant consisting of quartic
triangular Bézier surfaces. The algorithm is computationally simple and produces visually pleasant smooth surfaces. We have
created a program packages for implementation, 3D visualization and comparison of our algorithm and the known Shirman and
Séquin’s method which is also based on splitting and quartic triangular Bézier patches. The results of our numerical experiments
are presented and analysed.
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2010 Mathematics Subject Classification: 65D05, 65D17, 68U05

Introduction

Interpolation of data points in R3 by smooth surface is an important problem in applied mathematics which finds
applications in various areas such as medicine, architecture, archeology, computer graphics, bioinformatics, scientific
visualization, etc. In general the problem can be formulated as follows: Given a set of points (xi, yi, zi) ∈ R3, i =

1, . . . , n, find a bivariate function F(x, y) defined in a certain domain containing points Vi = (xi, yi), such that F
possesses continuous partial derivatives up to a given order, and F(xi, yi) = zi.

Various methods for solving this problem were proposed and applied, see e.g. [1–4]. A standard approach to
solve the problem consists of two steps [1]:

1. Construct a triangulation T = T (V1, . . . ,VN);

2. For every triangle in T construct a surface which interpolates the data in the three vertices.

Shirman and Séquin [5, 6] construct a smooth surface consisting of quartic triangular Bézier surfaces (TBS).
Their method assumes that in addition we are given as input the normal vectors at points Pi, i = 1, . . . , n. First,
Shirman and Séquin construct a smooth cubic curve network defined on the edges of T and degree elevate it to quartic.
In this way they increase the number of degrees of freedom required for the smooth connection of adjacent Bézier
patches. Next, for every triangle in T Shirman and Séquin apply procedure called splitting in which for each triangle
in T a macro-patch consisting of three Bézier sub-patches is constructed. Splitting was originally proposed by Clough
and Tocher [7] and further developed by Percell [8] and Farin [9] for solving different problems. To compute the
inner Bézier control points that are close to the edges of T , Shirman and Séquin use a method proposed by Chiyokura
and Kimura [10, 11], which was originally proposed in a different setting. The resulting interpolation surfaces often
suffer from unwanted bulges, tilts, and shears as pointed out by the authors in [12] and more recently by Hettinga and
Kosinka in [13].

Nielson [14] proposes a method called minimum norm network (MNN) which computes a smooth interpolation
cubic curve network defined on the edges of T so as to satisfy an extremal property. A significant advantage of Niel-
son’s method is that simultaneously with the MNN, the normal vectors at the data points are computed. Next, MNN
is extended to a smooth interpolation surface using an appropriate blending method based on convex combination



schemes. Nielson’s interpolant is a rational function on every triangle in T and consecutively may have large values
in terms of energy.

Here we present a new algorithm for interpolation of data in R3 which is computationally simple and produces
visually pleasant smooth surfaces. Our goal is to construct a smooth interpolation surface that is piecewise polynomial
and consists of patches of smallest possible degree. The algorithm first computes the MNN and degree elevate it to
quartic, and then constructs a smooth interpolation surface which consists of quartic TBS and is based on splitting.
The main differences with Shirman and Séquin’s method are as follows. Our choice of the inner Bézier control points
allows to avoid possible distortions and twists which appear in surfaces constructed by Shirman and Séquin’s method
[5, 6]. Hence, this choice improve the quality of the resulting surfaces. Furthermore, Shirman and Séquin impose an
additional condition that the three quartic curves defined on the common edges of the three sub-patches are degree
elevated cubic curves. This condition is not necessary to obtain G1-continuity across the common edges of the sub-
patches. We use different condition for the inner points of the sub-patches and believe that such a choice would
facilitate the construction of convex macro-patches.

We have created a program package for implementation, 3D visualization and comparison of Shirman and
Séquin’s algorithm and the new algorithm. We have chosen Plotly [15] and Three.js [? ] graphics libraries as
our main implementation and visualization tools. We performed a large number of experiments using data of increas-
ing complexity and analysed the results with respect to different criteria.

The paper is organized as follows.

Methods...

In this section we propose an algorithm to construct G1-continuous interpolation surface consisting of quartic TBP.
We first compute the MNN which

Splitting
For each triangle in T the splitting procedure constructs three triangular Bézier patches (sub-patches) that possess
a common vertex and form a G1-continuous polynomial surface (macro-patch) defined in the triangle. The Bézier
patches are computed through computation of their control points. Splitting adds more degrees of freedom which
allows to connect smoothly the neighbouring macro-patches.

We compute the control points of the three Bézier sub-patches consecutively in four layers as shown in Fig. 1.
The first layer consists of inner control points that are nearest to the boundary of τ. The last fourth layer contains of
single point z. This point z is the splitting point and will be computed as a center of the triangle with vertices in the
previous third layer. We use the following notation.

� vertices of the sub-patches;
• inner control points on the boundary of the macro-patch;
� inner control points of the three inner boundary curves of

the sub-patches;
◦ inner control points of the sub-patches.

Computing the control points in the first layer. There are three points of type � and six points of type ◦ in this
layer (see Fig. 1b). First, we compute points of type � as centers of the three small triangles with vertices •�• on the
boundary of the macro-patch. Let τ be the last triangle in a group of triangles around v, see Fig. 1a. where the control
points qi, i = 1, 2 of the corresponding cubic curve are denoted by •. We compute the points zi, i = 1, 2, of type ◦ as
follows.

z′i = q̂1
1 − q̂1

0 + qi,

z′′i = q̂2
1 − q̂2

0 + qi,

z̃i = (1 −
i
3

)z′i +
i
3

z′′i , i = 1, 2. (1)

The first two coordinates of zi, i = 1, 2, are the same as of z̃i, i = 1, 2, respectively. We note that the projections of
zi, i = 1, 2, onto Oxy lie inside τ. In this way we avoid unwanted twisting and tilting of the patch. The third coordinates
of zi, i = 1, 2, are computed as shown in subsection ??.
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FIGURE 1. Construction of the G1-continuous Bézier patch by splitting: a. First layer: control points zi, i = 1, 2, are computed by
solving the vertex enclosure problem and a minimization procedure; b. The 19 control points of the three sub-patches are computed
using Algorithm 2 for splitting.

Computing the control points in the second and third layers. Now we already know the control points of type
� and type • on the boundary of the macro-patch and control points �,◦ in the first layer. Let us consider an inner
boundary curve, see Fig. 1b and the curve with control points q̂1

i , z, i = 0, . . . , 3. We have to compute the remaining
control points so as to satisfy the G1-continuity conditions (??) across that curve. Points q̂1

1 and z are centers of
the corresponding small triangle •�• and triangle q̂1

3q̂2
3q̂3

3 where points q̂1
3, q̂

2
3, q̂

3
3 are unknown for now. We have

α0 = α1 = 1/2 and β0 = β1 = −1/2. The first equation of system (??) is

z1 + z6

2
= s1 = −

1
2

q̂1
1 +

3
2

q̂1
2 ⇒ q̂1

2 =
1
3

(q̂1
1 + z1 + z6).

Hence q̂1
2 is a center of the triangle z1q̂1

1z6. Analogously, for the third equation of (??) we have

x3 + x2

2
= s3 = −

1
2

q̂1
2 +

3
2

q̂1
3 ⇒ q̂1

3 =
1
3

(q̂1
2 + x2 + x3)

and hence q̂1
3 is a center of triangle x3q̂1

2x2. We note that it is not necessary for the inner quartic Bézier curves to
be degree elevated cubic curves since we have α0 = α1, β0 = β1 and the second equation (??) of system (??) is
automatically satisfied.

Suppose that we know points x1,x2,x3 in the second layer. Then points q̂1
3,q̂2

3,q̂3
3 in the third layer are

q̂1
3 = (q̂1

2 + x2 + x3)/3, q̂2
3 = (q̂2

2 + x1 + x3)/3, q̂3
3 = (q̂3

2 + x1 + x2)/3. (2)

Finally, the splitting point is z := 1
3 (q̂1

3 + q̂2
3 + q̂3

3) and the vertex enclosure problem is satisfied automatically.
It remains to compute the three points x1,x2,x3. They provide three degrees of freedom which can be used for

example to control the shape of the surface. In [5, 6] Shirman and Séquin use the condition that the three quartic
curves defined on the inner edges are degree elevated cubic curves as it is for the boundary curves of the macro-patch.
As we have already pointed out, this condition is not necessary for G1-continuity between two sub-patches and then
we do not need to impose it. We compute points x1,x2,x3 as mid-points of the edges of the triangle q̂1

2q̂2
2q̂3

2 as follows.

x1 = (q̂2
2 + q̂3

2)/2, x2 = (q̂1
2 + q̂3

2)/2, x3 = (q̂1
2 + q̂2

2)/2.

Then the control points in second, third, and fourth layers become co-planar. We believe that this choice of x1,x2,x3
will be useful when we try to construct a simple macro-patch which is convex in addition.



Algorithm 1 below takes a triangle τ in Ts and the degree-elevated quartic boundary control points of the corre-
sponding patch and computes 19 control points of the three G1-continuous quartic Bézier sub-patches.

Algorithm 1 Splitting
Step 1. Compute the control points in the first layer:

1.1 Points of type � are centers of the three small triangles with vertices •�•.
1.2 Then points of type ◦ are computed as described in subsection ??.

Step 2. Compute the control points in the second layer:
2.1 Points of type � are centers of the three small triangles with vertices ◦�◦ in the first layer.
2.2 Then points of type ◦ are mid-points of the segments with vertices of type � in the second layer.

Step 3. Compute the control points in the third layer: The three points
of type � are centers of the small triangles with vertices ◦�◦ in the second layer.

Step 4. Compute the splitting point of type � as a center of the triangle with vertices � in the third layer.

Examples

We implemented our Algorithm ?? as a web application using HTML, JavaScript, and the open source library Plotly
[15]. The advantages of using Plotly are the options to display the coordinate system and the coordinates of the points
when the cursor is placed on them, and to control the surfaces displayed. To demonstrate the results of our work we
present here the following example that clearly show the main differences between Shirman and Séquin’s and our
methods.

Example 1 We consider data obtained from a regular triangular pyramid. We have N = 4, v1 = (−1/2,−
√

3/6),
v2 = (1/2,−

√
3/6), v3 = (0,

√
3/3), v4 = (0, 0), and zi = 0, i = 1, 2, 3, z4 = −1. The triangulation and the correspond-

ing MNN are shown in Fig. 3. In this case Ts is empty and no triangle has been splitted. The corresponding Shirman
and Séquin’s surface is shown in Fig. 3. The surface generated by our Algorithms ?? and 1 is shown in Fig. ??.

FIGURE 2. The MNN for the data in Example 1

Conclusion and Future Work

In this paper we have proposed a method for constructing a G1-continuous interpolation surface that consists of
triangular quartic Bèzier patches. We note that while splitting decreases the smoothness of a polynomial macro-patch
to G1 only, on the other hand, it is not necessary to apply splitting to all triangles in T . Hence, a challenging idea is to
construct an interpolation surface that is piecewise polynomial and consists of the least number of Bèzier patches of
smallest possible degree. Such interpolants are preffered in practice since they are computationally simple and have
higher degree of smoothness.



FIGURE 3. Shirman and Séquin’s surface for the data in Example 1.

ACKNOWLEDGMENTS

This research was supported by Sofia University Science Fund Grant No. 80-10-171/2020, and by European Re-
gional Development Fund and the Operational Program “Science and Education for Smart Growth” under Contract
BG05M2OP001-1.001-0004 (2018-2023).

REFERENCES

[1] S. Mann, C. Loop, M. Lounsbery, D. Meyers, J. Painter, T. DeRose, and K. Sloan, in Curve and Surface
Design, edited by H. Hagen (SIAM, Philadelphia, 1992), pp. 145–172.

[2] T. K. Dey, Curve and Surface Reconstruction: Algorithms with Mathematical Analysis, Cambridge Mono-
graphs on Applied and Computational Mathematics (Cambridge University Press, 2006).

[3] K. Anjyo, J. Lewis, and F. Pighin, Scattered data interpolation for computer graphics, SIGGRAPH 2014
course notes, 2014, last accessed June 20, 2020.

[4] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, G. Guennebaud, J. Levine, A. Sharf, and C. Silva, Comput.
Graph. Forum 36, 301 – 329 (2017).
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