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Abstract

We present a new program package for interactive implementation and 3D
visualisation of three fundamental algorithms for triangular surface subdivi-
sion. Namely, these are Loop subdivision, Modified Butterfly subdivision, and
Kobbelt

√
3-subdivision. Our work and contributions are in the field of exper-

imental algorithmics and algorithm engineering. We have chosen Java applet
application and Java 3D as our main implementation and visualisation tools.
This choice ensures platform independency of our package and its direct use
without restrictions. The applet can be used for experiments with user’s data
sets since it works with host file system. The latter allows its usage for research
and educational purposes. We have implemented extensive experiments with
our package using meshes of different type and increasing complexity. We com-
pared the behaviour of the three algorithms with respect to various criteria.
The experimental results are presented and analysed.
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1. Introduction. Subdivision algorithms are one of the most successful
modern techniques for modelling smooth free-form shapes in 3D, [1–4]. They
allow simple and efficient construction of smooth surfaces of arbitrary topology
starting from an initial polygonal control mesh. These algorithms recursively
subdivide the control mesh to form a new refined mesh with more faces, edges,
and vertices which is topologically equivalent to the original. A smooth surface
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is obtained as a limit of the recursive process of subdivision. Because of their
simplicity, efficiency, and high quality results, the subdivision algorithms have
applications in various fields. These include CAGD, computer graphics, solid
modelling, computer game software, computer animation, aerospace and auto-
motive design, industrial design, architecture, medicine, and others.

In this paper we focus on three subdivision algorithms: Loop subdivision
(L), Modified Butterfly subdivision (MB), and Kobbelt

√
3-subdivision (K). The

main contributions of our work can be summarised as follows:
1. We implemented a new software package for interactive visualisation, ma-

nipulation and comparison of the subdivision surfaces generated by these
three algorithms. The package is user friendly and provides many options
for testing and experimentation.

2. We implemented extensive experimental work. The results were analysed
to reveal main differences between the tested algorithms with respect to
various criteria including quality, performance, and efficiency.

There is a number of general purpose geometric modelling and open source
mesh processing packages available on the net that include as routines algorithms
for surface subdivision. To our knowledge, these are CGAL [5], MeshLab [6], and
OpenFlipper [7]. Their use, however, requires installation on the user’s machine
as well as special training. We discuss the advantages of using Java applet in
Section 3.

The paper is organised as follows: In Section 2 we briefly describe the three
algorithms. In Section 3 we provide detailed information about the main features
of the package. In Section 4 we present the results from our experimental work
and the comparison between the algorithms.

2. Mathematical background. Subdivision surface in 3D computer graph-
ics is a polygonal mesh surface generated from an initial mesh through a recursive
process that smooths the mesh while increases its density. We refer to the initial
mesh as a control mesh. A control mesh consists of a set of vertices, a set of
edges, and a set of faces plus incidence information defining their interrelations.
The geometry of a mesh is defined by the coordinates of the vertices in 3D. A
subdivision scheme consists of a set of rules for refinement and modification of the
control mesh. The number of refinements (levels of subdivision) are controlled
by user’s requirements and the purposes of subdivision. In a limit subdivision
schemes usually produce smooth surfaces with a possible exception of some ver-
tices that are called extraordinary. In this paper we consider meshes with all their
faces triangles. This is not a restriction since any polygonal mesh can be triangu-
lated straightforwardly by adding edges. The extraordinary vertices for triangle

meshes are all vertices of degree different from 6. Next we present briefly the
subdivision rules for subdivision schemes L, MB, and K. All meshes considered
are closed triangle meshes, i. e. without boundary.
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Sheme 1. Loop subdivision

Step 1. For each edge e = (v1, v2) compute a new edge point

ve = 3/8(v1 + v2) + 1/8(vl + vr), where vl and vr are the

third vertices of the faces incident to the edge e.

Step 2. For each vertex v compute a new vertex

v′ = (1 − nαd)v + α

d
∑

j=1

vj , where v1, . . . , vd are the

vertices adjacent to v and αd =
1

d

(

5

8
− (

3

8
+

1

4
cos

2π

d
)2

)

.

Step 3. Replace each face f = (v1, v2, v3) with four new faces

f1 = (v′1, ve3
, ve2), f2 = (v′2, ve1

, ve3
), f3 = (v′3, ve2

, ve1
),

and f4 = (ve1
, ve2

, ve3
).

2.1. Loop subdivision. L was proposed by Loop [8] in 1987. The scheme
is a generalisation of the binary subdivision of the three-directional quartic box
splines. It works as follows, see Fig. 1.

Fig. 1. (a) illustrates Step 1 of L; (b) illustrates Step 2 where new vertex v
′ is

computed for a vertex v with d = 5; (c) illustrates Step 3 for input control mesh
icosahedron

The limit surface generated by L is C2-continuous except at extraordinary
vertices where it is only C1-continuous. L is an approximating scheme since the
limit surface does not contain the vertices of the control mesh.

2.2. Modified Butterfly subdivision. Butterfly subdivision was initially
proposed by Dyn et al. [9] in 1990. The scheme is a generalisation of the 4-point
curve subdivision. A tension parameter w is used to control how close is the
limit surface to the control mesh. The obtained limit surface is C1-continuous
except at extraordinary vertices of degree d = 3 and d > 7. An extension of the
algorithm was proposed in 1993 by Dyn et al. [10]. However, the problem with
the smoothness at the extraordinary vertices remained. In 1996, Zorin et al. [11]
presented an improved modification of the algorithm known as MB. The scheme
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for regular meshes is the same as in [10] but in addition the authors propose
rules for the extraordinary vertices that guarantee C1-continuous limit surface
for arbitrary triangle meshes. The scheme works as follows:

Scheme 2. Modified Butterfly subdivision

Step 1. For each edge e = (v1, v2) with endpoints of degree 6 compute

a new vertex ve = (1/2 − w)(v1 + v2) + (1/8 + 2w)(v4 + v8)+

+(−1/16− w)(v3 + v5 + v7 + v9) + w(v6 + v10), see Fig. 2(a)

Step 2. For each edge e = (v, v1) with extraordinary vertex v and

adjacent to v vertices v1, . . . , vd, compute new vertex

ve =

d
∑

j=1

αjvj as follows, see Fig. 2(b) :

d ≥ 5, αj = (1/4 + cos
2π(j − 1)

d
+ 1/2 cos

4π(j − 1)

d
)/d, j = 1, . . . d;

d = 3, α1 = 5/12, α2 = α3 = 1/12;

d = 4, α1 = 3/8, α3 = −1/8, α1 = α3 = 0.

Step 3. For each edge e = (v1, v2) with extraordinary vertices v1 and v2

compute two new vertices for each of them using Step 2.

Then take its average as a new vertex ve.

Step 4. Replace each face f = (v1, v2, v3) with four new faces

f1 = (v1, ve3
, ve2), f2 = (v2, ve1

, ve3
), f3 = (v3, ve2

, ve1
),

and f4 = (ve1
, ve2

, ve3
), see Fig. 2(c).

Fig. 2. (a) illustrates Step 1 of MB where new vertex ve is computed for an edge
with endpoints of degree 6; (b) illustrates Step 2 where new vertex ve is computed for
an edge with extraordinary vertex v of degree d = 5 as endpoint; (c) illustrates Step

4 where the old face f = (v1, v2, v3) is replaced with four new faces

MB is an interpolating scheme since the limit surface contains the vertices of the
control mesh.
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2.3. Kobbelt
√

3-subdivision. Scheme K was proposed by Kobbelt [12]
in 2000. It works in three steps, see Fig. 3.

Scheme 3. Kobbelt
√

3-subdivision

Step 1. For each face f = (v1, v2, v3) compute its center

mf =
1

3
(v1 + v2 + v3) and create three new faces f1 =

(v2, v3, mf ), f2 = (v3, v1, mf ), and f3 = (v1, v2, mf), see Fig. 3(a).

Step 2. For each vertex v compute new vertex v′ = (1 − αd)v+

+
αd

d

d
∑

j=1

vj , where v1, . . . , vd are vertices adjacent to v

and αd =
1

9

(

4 − 2 cos
2π

d

)

. Replace v with v′.

Step 3. Replace each old edge with the edge between

the centers of the adjacent triangles, see Fig. 3(b), 3(c).

Fig. 3. (a) illustrates Step 1 of K; (b) illustrates Step 3; (c) illustrates Step 3 for input
control mesh icosahedron

The limit surface is C2-continuous except at extraordinary vertices where it
is C1-continuous. K is an approximating scheme.

3. Overview of our work. We implemented a program package for inter-
active 3D visualisation and comparison of L, MB, and K subdivision schemes
as an interactive Java applet using Java 3D graphics library. Based on extensive
experimentation we analysed the behaviour of the three considered schemes for
various closed triangle meshes of arbitrary topology.

3.1. Why Java applet. Java applet is a compiled Java program runned
by web browser. When activated the executable file is downloaded automatically
from a web server to the user’s system. Then it is executed by a Java Virtual
Machine (JVM).

Our choice of implementation and visualisation tools is motivated by the
following main advantages of using Java applets.
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Java applets are supported by most web browsers and they are platform
independent. Java applets can be executed in all popular OS including Microsoft
Windows, Unix, Mac OS and Linux. Thus the distribution of a program through
the Internet is easier.

Most web browsers cache applets, so when returning to a previously visited
web page, the applet loads quickly. Moreover, applet’s performance improves
with multiple executions within one session of the browser. The only condition
for running the applet is that the user’s system must have Java plug-in and
Java 3D installed which is easy since Java is freeware. This is an advantage
over using similar visualisation packages available on the Internet. For example,
using Matlab requires installed Matlab software and moreover the user has to be
familiar with Matlab programming.

A disadvantage is that despite the use of Java arhive (jar) files, the jar file can
still be too large which significantly slows down its downloading and execution.
This is one of the reasons why we didn’t include in our Java applet more triangular
subdivision algorithms.

3.2. Description of the package. The main features of our package are:

• The initial mesh can be chosen either from four drop-down lists, or can be
loaded from an external file since our applet is signed to allow access to
the user’s local file system. Most of the preinstalled meshes on the lists are
downloaded from [13–16].

• The package works with closed polygonal meshes of arbitrary topology. In
case the input mesh is not a triangle mesh, the program automatically
triangulates it using the Java 3D class Triangulator and then proceeds.

• The level of subdivison can be controlled manually.

• The applet visualises meshes in Wireframe and Shaded modes with addi-
tional options Show All Steps and Show Initial Mesh. Wireframe mode is
more convenient to demonstrate and analyse the subdivision process while
Shaded is appropriate to study and compare the shape and the smoothness
of the obtained surfaces.

• The surfaces can be edited interactively by rotation, translation and resiz-
ing.

• An additional slider Surface tension allows the adjustment of the tension
parameter w for MB in the interval [−1, 1].

• The generated mesh at each subdivision level can be exported as .obj file.
So the user has the possibility to choose which algorithm to use at each
subdivision level and even to switch between different algorithms during
the creation of a single complex surface.

The package is accessible through the applet and can be tested at the Internet
address [17]. A detailed user guide including complete description of package
features and their control as well as results from our experimental work can be
found in [18].
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4. Experimental work and comparison of the algorithms. Using our
package we have compared the behaviour of the algorithms with respect to various
criteria. Below we discuss our observations and conclusions.

A: Control mesh tetrahedron after 5 subdivision steps

B: Control mesh epcot after 3 subdivision steps

C: Control mesh bunny after 4 subdivision steps

Fig. 4. Various meshes with increasing complexity

Type of scheme: interpolating or approximating. L and K are ap-

proximating schemes while MB is interpolating. There are substantial differences
between the shape of the surfaces obtained with these two types of schemes. The
approximating schemes shrink the surface during the subdivision. The shrinkage
effect is quite obvious in simple models with small number of faces, e.g. tetrahe-
dron or octahedron, see Fig. 4A.

The approximating schemes produce visually smooth, good looking surfaces
and for this reason they are generally the preferable modelling tool in computer
animation. Even if the control mesh is dense and with many creases, the scheme
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has a tendency to smooth them out, see Fig. 4Ba, 4Bc. The main drawback
of the approximating schemes is that the user can not foresee the shape of the
limit surface by looking at the control mesh. In contrast, the major benefit of
the interpolating schemes is that given a control mesh, it is easy to control the
shape of the limit surface since it remains close to the original mesh. A drawback
is the appearing unpleasant undulation, rippling or bulging especially for control
meshes with sharp features, see Fig. 4Bb. On the other hand, the interpolating
schemes preserve more details and sharp features of the model, see Fig. 4Cb.

Computational costs. After one level of subdivision the number of faces
using L and MB increases four times while using K the number of faces increases
three times. So one subdivision step of K is usually faster compared to one
step of L and MB. On the other hand, K produces larger faces and the refined
mesh has a poorer quality. But the slower increase of the number of faces allows
better control of the details level and makes K suitable for adaptive subdivison.
Our experiments were performed on a Windows 7 system with IntelCore i7-3630
CPU and 2.4-GHz processor, 12-GB RAM. The times to perform one level of
subdivision of L, MB, and K on a mesh with 200 faces were .0822 ms, .3834
ms, and .0599 ms, respectively. The difference in the speeds increases with the
increase of the subdivision level and mesh complexity, see Table 1.

Regularity of the generated meshes. Regular meshes consisting of good
quality triangles are preferable in most applications. The quality of a triangle
can be measured by the aspect ratio r/R where r and R denote the radii of the
inscribed and circumscribed circles, respectively. The regularity of a mesh is the
minimal aspect ratio of all triangles. We have compared numerically the quality
of the meshes produced by the three algorithms. We tracked the number of equi-
lateral triangles, regularity, and the number of bad triangles. The computational
results for meshes of increasing complexity tetrahedron, double torus, bunny, and
king are presented on Table 1. The experiments show that the percentage of the
equilateral triangles of maximum aspect ratio 1/2 is highest for meshes gener-
ated by L and lowest for meshes generated by MB. The regularity is lowest for
meshes generated by MB. With the increase of the subdivision level and mesh
complexity the regularity for L is getting better than the regularity for K, see
Table 1. A visual comparison of the regularity was created using Meshlab [6] and
can be seen in [18].

5. Conclusions and future work. We have implemented a large number
of experiments on meshes of increasing complexity and analysed the results with
respect to various criteria. Our comparison results can be useful in deciding which
of these three algorithms is best suited for specific applications. Currently, our
package works with closed meshes only. Our intention is to further enhance the
package to work with arbitrary polygonal meshes and to compare numerically
other important features of the generated meshes.
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T a b l e 1

Comparison of percentage of equilateral triangles, regularity (minimal aspect ratio),
number of bad triangles, and computational costs in ms of L, MB, and K for meshes

of increasing complexity: tetrahedron, double torus, bunny, and king

Subd. ♯ of % of Regu ♯ of Comp.

Mesh Alg. level △ eq. △ larity bad △ costs

0 4 25 .4142 3

L. 1 16 6.25 .2511 6 .0075

5 4 096 31.45 .0938 3 .3329

M.B. 1 16 6.25 .3293 3 .0143

5 4 096 18.70 .1132 3 .3365
√

3 1 12 50 .1800 3 .0108

5 972 31.48 .0958 1 .0866

0 116 0 .1360 4

L. 1 1 856 1.19 .2069 2 .0500

5 118 784 10.89 .2207 1 12.9876

M.B. 1 464 1.72 .1491 2 .1101

5 118 784 7.09 .0913 1 13.0863
√

3 1 348 9.77 .1956 1 .0344

5 28 188 9.67 .2253 1 2.2822

0 200 12.5 .0255 1

L. 1 800 25 .0091 1 .0822

5 204 800 28.32 .0283 1 25.7828

M.B. 1 800 12.38 .0145 1 .3834

5 204 800 13.02 .0007 1 29.7751
√

3 1 600 21.67 .0098 1 .0599

5 48 600 27.28 .0286 1 4.3842

0 624 8.97 .0036 8

L. 1 2 496 7.05 .0050 4 .2319

5 638 976 13.66 .0206 4 76.7748

M.B. 1 2 496 5.77 .0470 4 .2869

5 638 976 4.38 .0000 4 102.5647
√

3 1 1 872 7.05 .0024 8 .1723

5 151 632 12.47 .0021 4 54.4312
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