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Scattered Data Interpolation in R3 by Smooth
Curve Networks

Krassimira Vlachkova

Given scattered data in R3 and an integer k ≥ 1 we consider the problem
of finding necessary and sufficient conditions for k-times smoothness of
interpolation curve networks. Interpolation curve networks are defined
on the edges of a triangulation associated with the projections of the
data onto a fixed plane and play an essential role in construction of
smooth interpolation surfaces in R3. In previous work this problem has
been solved for k = 1 by the aid of a geometric criterion which does
not generalize for k > 1. In this paper we apply a different approach
and obtain necessary and sufficient conditions for k-times smoothness of
interpolation curve networks.

1. Introduction

The problem of interpolating scattered data in R3 by smooth surfaces has a
wide range of applications in both theory and practice and received considerable
attention in the last decades, see, e.g., the surveys [2], [3], [4]. The problem can
be formulated as follows: Given a set of points (xi, yi, zi) ∈ R3, i = 1, . . . , n,
find a bivariate function F possessing continuous partial derivatives up to a
given order and such that F (xi, yi) = zi. One of the possible approaches to
interpolating scattered data is due to Nielson [5]. It consists of the following
three steps:

Step 1. Construct a triangulation T of the points Vi = (xi, yi), i = 1, . . . , n.

Step 2. Compute a smooth curve network interpolant defined on T .

Step 3. Compute a smooth interpolant using an appropriate blending method.

Let k be a positive integer. In this paper we concentrate on Step 2 of the
above approach. We consider the problem of finding necessary and sufficient
conditions for k-times smoothness of an interpolation curve network. Such a
characterization is valuable, since it precisely determines the class of k-times
smooth networks interpolating given data. Subsequently, the structure of this
class can be studied (e.g., by constructing an appropriate basis) to obtain new
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theoretical results and efficient numerical methods for finding k-times smooth
interpolation networks, see [1] and [6] for the case k = 1. In [1], among others,
the problem has been solved for k = 1 by the aid of a geometric criterion which
does not generalize for k > 1. Here we propose a different approach and solve
the problem for any k ≥ 1.

The paper is organized as follows: In Section 2 we introduce notation and
formulate the problem. In Section 3 we obtain the necessary and sufficient
conditions for k-times smoothness. The main results are summarized in Theo-
rems 3 and 4.

2. Notation and Problem Formulation

Let n ≥ 3 be an integer and Pi := (xi, yi, zi), i = 1, . . . , n, be different
points in R3. We call this set of points data. The data are scattered if the
projections Vi := (xi, yi) onto the plane z = 0 are different and non-colinear.

Next, a collection of non-overlapping, non-degenerate triangles in R3 is a
triangulation of the points Vi, i = 1, . . . , n, if the set of the vertices of the
triangles coincides with the set of the points Vi, i = 1, . . . , n. Let T be a
given triangulation of the points Vi, i = 1, . . . , n. The union of triangles in T
is a polygonal domain which we denote by D. In general D is a collection of
polygons with holes. The set of the edges of the triangles in T is denoted by
E. If there is an edge between Vi and Vj in E, it will be referred to by eij or
simply by e if no ambiguity arises. Similarly, eij or simply e will denote the
vector corresponding to eij starting at Vi.

Definition 1. A curve network is a collection of real-valued univariate
functions {fe}e∈E defined on the edges in E.

With any real-valued bivariate function F defined on D we naturally asso-
ciate the curve network defined as the restriction of F on the edges in E, i.e.,
for e = eij ∈ E,

fe(t) := F
((

1− t
‖e‖
)
xi + t

‖e‖xj ,
(
1− t

‖e‖
)
yi + t

‖e‖yj

)
,

where 0 ≤ t ≤ ‖e‖, and ‖e‖ =
√

(xi − xj)2 + (yi − yj)2.
(1)

Furthermore, according to the context, F will denote either a real-valued
bivariate function or a curve network defined by (1). For every integer k ≥ 1
let Fk be the class of k-times smooth interpolants defined by:

Fk :=
{
F (x, y) : F (xi, yi) = zi, i = 1, . . . , n,

∂kF

∂xr∂yk−r
∈ C(D), r = 0, . . . , k

}
,

where C(D) is the class of bivariate continuous functions defined on D. We
define the class of k-times smooth interpolation curve networks by

Ck(E) :=
{
F = {fe}e∈E : F (x, y) ∈ Fk

}
.
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In the next section we obtain necessary and sufficient conditions for an
interpolation curve network F = {fe}e∈E to be in the class Ck(E).

3. Necessary and Sufficient Conditions for k-times
Smoothness

Let αe denote the oriented angle between e and the positive direction of
the x-axis. Then we have

fe(t) = F (x, y)|e = F (xi + t cosαe, yi + t sinαe), 0 ≤ t ≤ ‖e‖. (2)

We obtain our conditions inductively with respect to k. Let us consider the
case k = 1 first. Taking derivatives in (2) we obtain

f ′e(t) =
∂F

∂x
(xi + t cosαe, yi + t sinαe) cosαe

+
∂F

∂y
(xi + t cosαe, yi + t sinαe) sinαe.

(3)

Let mi denote the degree of the vertex Vi, i.e., the number of the edges incident
to Vi. Let mi ≥ 3 and eil, eim and eir be three arbitrary edges incident to Vi.
From (3), with t = 0, we obtain the following system of linear equations in the
unknowns ∂F/∂x(Vi) and ∂F/∂y(Vi):∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′il(0) =
∂F (Vi)

∂x
cosαil +

∂F (Vi)

∂y
sinαil

f ′im(0) =
∂F (Vi)

∂x
cosαim +

∂F (Vi)

∂y
sinαim

f ′ir(0) =
∂F (Vi)

∂x
cosαir +

∂F (Vi)

∂y
sinαir.

(4)

Since F ∈ C1(D) then ∂F/∂x and ∂F/∂y are continuous in D. In particular,
they are continuous at the point Vi. Therefore the system (4) has a solution.
Now we shall apply Rouchet theorem which states that the necessary and suf-
ficient condition for an m × n system of linear equations Ax = b to have a
solution is the rank r(A) of the coefficient matrix to be equal to the rank of
the augmented matrix. Moreover, the number of the solutions of the system
depends on n− r(A) parameters. In our case the rank of the coefficient matrix
of (4) is equal to 2, since at least two of the edges eil, eim, eir are not co-linear
and therefore there exists a minor of rank 2. Thus, the necessary and sufficient
condition for (4) to have a unique solution is the following determinant to be
zero: ∣∣∣∣∣∣∣

f ′il(0) cosαil sinαil

f ′im(0) cosαim sinαim

f ′ir(0) cosαir sinαir

∣∣∣∣∣∣∣ = 0. (5)
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In the case mi = 2, i.e., Vi is a boundary point of the domain D, the system
(4) consists of two equations only:∣∣∣∣∣∣∣∣

f ′il(0) =
∂F (Vi)

∂x
cosαil +

∂F

∂y
(Vi) sinαil

f ′im(0) =
∂F

∂x
(Vi) cosαim +

∂F

∂y
(Vi) sinαim.

(6)

Since eil and eim are edges of the triangulation then they are not co-linear.
Therefore the determinant of (6), which is equal to sin(αim − αil), is not zero.
Thus (6) has always a unique solution.

Let Ni := {i1, . . . , imi
} be the set of indices of the vertices adjacent to Vi

in T listed in a clockwise order around Vi starting from an arbitrarily chosen
index i1. We can formulate the following theorem and corollary.

Theorem 1. A curve network F = {fe}e∈E is smooth, i.e., F ∈ C1(E), if
and only if for every vertex Vi of degree mi ≥ 3 and for every three different
indices k, l,m ∈ Ni, the condition (5) holds.

Corollary 1. A curve network F = {fe}e∈E is smooth if and only if for
every vertex Vi of degree mi ≥ 3 and r = 1, . . . ,mi − 2, it holds∣∣∣∣∣∣∣

f ′iir (0) cosαiir sinαiir

f ′iir+1
(0) cosαiir+1

sinαiir+1

f ′iir+2
(0) cosαiir+2

sinαiir+2

∣∣∣∣∣∣∣ = 0. (7)

Conditions (7) for i = 1, . . . , n, mi ≥ 3 and r = 1, . . . ,mi− 2 are independent.

The graphs of the functions defined by (1) can be considered as para-
metric curves (x = xe(t), y = ye(t), z = ze(t) in R3. Then the vector
te := (cosαe, sinαe, f

′
e(0)) ∈ R3 is the tangent vector to fe at the point

Vi. Therefore (7) is a necessary and sufficient condition for the tangent vectors
tiir tiir+1 tiir+2 to be linearly dependent, i.e., co-planar.

Geometrically the smoothness of {fe}e∈E means that at every point Vi,
i = 1, . . . , n, the curves have a common tangent plane. In [1] this geometric
criterion is used to obtain the conditions (7) for k = 1. But it is not clear how
this geometric approach can be generalized for k > 1. The approach used here
allows us to obtain necessary and sufficient conditions for arbitrary k > 1.

Definition 2. The vertex Vi is singular if there are two co-linear edges
starting from Vi.

Definition 3. The data are nonsingular if all vertices Vi, i = 1, . . . , n, are
nonsingular.
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Theorem 2. Let the data be nonsingular. A curve network F = {fe}e∈E
is k-times smooth, i.e., F ∈ Ck(E), if and only if F ∈ Ck−1(E) and for every
vertex Vi of degree mi ≥ k+2 and for every k+2 different indices j1, . . . , jk+2 ∈
Ni, it holds ∣∣∣∣∣∣∣

f
(k)
ij1

(0) cosk αij1 . . . sink αij1

· · · · · · · · · · · ·
f
(k)
ijk+2

(0) cosk αijk+2
. . . sink αijk+2

∣∣∣∣∣∣∣ = 0. (8)

Proof. Consider an interpolation curve network corresponding to F ∈ Fk.
Taking k-th derivatives in (2) we obtain

f (k)e (t) =

k∑
r=0

(
k

r

)
∂kF (xi + t cosαe, yi + t sinαe)

∂xr∂yk−r
cosk−r αe sinr αe. (9)

Let m ≤ mi and j1, . . . , jm ∈ Ni be m different indices. We consider the fol-
lowing system of m linear equations in the k+1 unknowns ∂kF/∂xr∂yk−r(Vi),
r = 0, . . . , k, which is obtained from (9) for t = 0 and j = j1, . . . , jm:

f
(k)
ij (0) =

k∑
r=0

(
k

r

)
∂kF (Vi)

∂xr∂yk−r
cosk−r αij sinr αij . (10)

Next, we study the rank of the system (10) by applying Rouchet theorem.
Suppose first that m = k+ 1. Then (10) has exactly k+ 1 unknowns and k+ 1
equations. The determinant D of its coefficient matrix can be computed as
follows. First, assume that αijr 6= 0, π for r = 1, . . . , k + 1. Then we have

D =

k∏
r=0

(
k

r

) ∣∣∣∣∣∣
cosk αij1 cosk−1 αij1 sinαij1 . . . sink αij1

· · · · · · · · · · · ·
cosk αijk+1

cosk−1 αijk+1
sinαijk+1

. . . sink αijk+1

∣∣∣∣∣∣
=

k∏
r=0

(
k

r

) k+1∏
p=1

sink αijpV (cotαij1 , . . . , cotαijk+1
)

=

k∏
r=0

(
k

r

) k+1∏
p=1

sink αijp

∏
r>s

(cotαijr − cotαijs)

= (−1)k(k+1)/2
k∏

r=0

(
k

r

)∏
r>s

sin(αijr − αijs).

(11)

We used the Vandermonde determinant V (x1, . . . , xn) =
∏

r>s(xr − xs). The
case where one of the angles αijr = 0 (or π), is treated in the same way
obtaining

D = ±
k∏

r=0

(
k

r

)∏
r>s

sin(αijr − aijs).
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Since the data are nonsingular then D 6= 0 and therefore the rank of the system
(10) equals k + 1. Let mi ≥ k + 2 and m = k + 2. Since F ∈ Fk then its
partial derivatives of order k are continuous and therefore the system (10) has
a solution. Since the rank of (10) equals k + 1 then according to Rouchet
theorem, a necessary and sufficient condition for (10) to have a unique solution
is the condition (8) to hold.

In the case where mi < k + 2, the system (10) has k + 1 unknowns and
at most k + 1 equations. According to Rouchet theorem there always exists a
non-zero solution. �

Since the conditions in (8) are not irrelevant then the next corollary applies.

Corollary 2. Let the data be nonsingular. A curve network F = {fe}e∈E
is k-times smooth if and only if F is (k− 1)-times smooth and for every vertex
Vi of degree mi ≥ k + 2 and r = 1, . . . ,mi − k − 1, it holds∣∣∣∣∣∣∣∣

f
(k)
iir

(0) cosk αiir . . . sink αiir
...

f
(k)
iir+k+1

(0) cosk αiir+k+1
. . . sink αiir+k+1

∣∣∣∣∣∣∣∣ = 0. (12)

Conditions (12) for i = 1, . . . , n, mi ≥ k + 2 and r = 1, . . . ,mi − k − 1 are
independent.

We summarize the above in the next theorem, which is our main result.

Theorem 3. Let the data be nonsingular. The interpolation curve network
F = {fe}e∈E is k-times smooth if and only if for every i = 1, . . . , n

l+2∑
p=1

f
(l)
r+p(0)Ar

p = 0, for

l = 1, . . . ,min{k,mi − 2}, r = 1, . . . ,mi − l − 2, and where

Ar
p = (−1)p+1

r+k+1∏
m>s;m,s 6=p

sin(αiim − αiis).

(13)

It remains to consider the case where Vi is a singular vertex. Let there exist
p couples co-linear edges, say eijr and eijr+p

for r = 1, . . . , p, where 2p ≤ mi.
Applying Rouchet theorem to the system (10) we obtain

Theorem 4. The curve network F = {fe}e∈E is k-times smooth at Vi if
and only if

(i) f
(l)
ijr

(0) = (−1)lf
(l)
ijr+p

(0), for l = 1, . . . , k, r = 1, . . . , p.

(ii) Conditions (13) hold for the set of indices j1, . . . jp, j2p+1, . . . , jmi .

Remark. The results in this paper can be easily extended from a triangu-
lation to an arbitrary mesh on the vertices Vi, i = 1, . . . , n, e.g. rectangular,
hexagonal or irregular mesh, due to the fact that any such mesh can be obtained
from a certain triangulation by removing some of its edges.
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