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Abstract We present a new program package for interactive modeling and visual-
ization of smooth scattered data interpolation using quartic triangular Bézier patches
(TBP).We implemented an optimized algorithm (Vlachkova, 2021) based on quartic
smooth interpolation curve networks and splitting. The algorithm allows to reduce
the complexity of the resulting surface and to improve its smoothness. We have
chosen the open-source data visualization library Plotly.js as our main imple-
mentation and visualization tool. This choice ensures the platform independency
of our package and its direct use without restrictions. The package can be used for
experiments with user’s data sets since it works with the host file system. The latter
allows wide testing, modeling, and editing of the resulting interpolation surfaces.
We performed a large number of experiments using data of increasing complexity.
Here we present and comment the results of our work.

1 Introduction

Interpolation of data points in R3 by smooth surface is a fundamental problem in
applied mathematics which finds applications in a variety of fields such as medicine,
architecture, archeology, computer graphics and animation, and more. Recently, the
problem has become particularly relevant in bioinformatics and scientific visualiza-
tion for surface reconstruction.
We consider the following problem: Given a set of points (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈ R3, 𝑖 =

1, . . . , 𝑛, find a bivariate function 𝐹 (𝑥, 𝑦) defined in a certain domain 𝐷 containing
points 𝑉𝑖 = (𝑥𝑖 , 𝑦𝑖), such that 𝐹 possesses continuous partial derivatives up to a
given order, and 𝐹 (𝑥𝑖 , 𝑦𝑖) = 𝑧𝑖 .
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Various methods and approaches for solving this problem were proposed and
discussed, see, e.g., the survey papers [10, 9, 4, 19, 16], and also [6, 3]. A standard
approach to solve the problem consists of two steps, see [10]:
1. Construct a triangulation 𝑇 = 𝑇 (𝑉1, . . . , 𝑉𝑁 );
2. For every triangle in 𝑇 construct a surface which interpolates the data in the

three vertices.
The interpolation surface constructed in Step 2 is usually polynomial or piecewise

polynomial. Typically, the patches are computed with a priori prescribed normal
vectors at the data points. 𝐺1 or 𝐺2 smoothness of the resulting surface is achieved
either by increasing the degree of the patches, or by the so called splitting [5] in
which for each triangle in 𝑇 a macro-patch consisting of a fixed number of Bézier
sub-patches is constructed. Splitting was originally proposed by Clough and Tocher
[5] and further developed by Percell [12] and Farin [7] for solving different problems.
Splitting allows to keep the degree of theBézier patches low by increasing the degrees
of freedom. In practice using patches of least degree and splitting is preferable since it
is computationally simple and efficient. Known splitting algorithms apply splitting to
all macro-patches defined in 𝐷. We point out that splitting decreases the smoothness
of a polynomial macro-patch to 𝐺1.
Shirman and Séquin [13, 15] construct a 𝐺1 smooth surface consisting of quartic

TBP. Their method assumes that the normal vectors at the data points are given
as part of the input. Shirman and Séquin construct a smooth cubic curve network
defined on the edges of 𝑇 , first, and then degree elevate it to quartic. Next, they apply
splitting where for each triangle in𝑇 a macro-patch consisting of three quartic Bézier
sub-patches is constructed. The interpolation surfaces constructed by Shirman and
Séquin’s algorithm often suffer from unwanted bulges, tilts, and shears as pointed
out by the authors in [14] and more recently by Hettinga and Kosinka in [8].
Nielson [11] proposes a method which computes a smooth interpolation curve

network defined on the edges of 𝑇 so as to have common tangent planes at the data
points and to satisfy an extremal property. This curve network is called minimum
norm network (MNN) and is cubic. Nielson extends the MNN to a smooth interpo-
lation surface using a blending method based on convex combination schemes. The
interpolant obtained is a rational function on every triangle in 𝑇 .
Vlachkova and Radev [18] propose an algorithm for interpolation of data in R3

which improves on Shirman and Séquin’s approach in the following way. First, they
use Nielson’s MNN which is degree elevated to quartic curve network. A significant
advantage of Nielson’s method is that the normal vectors at the data points are
obtained through the computation of the MNN. Second, they extend the MNN to a
smooth surface consisting of quartic TBP so that to avoid unwanted distortions and
twists which appear in surfaces constructed by Shirman and Séquin’s method. As a
result, the quality of the resulting surfaces is improved.
Vlachkova [17] proposes an improved algorithm for interpolation of data in R3

using quartic TBP which does not necessarily apply splitting to all triangles of 𝑇 .
The algorithm identify an optimized subset of triangles in T where splitting needs to
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be applied. This reduces the complexity of the resulting surfaces and increases their
smoothness.
In this paper we present a new software package for interactive visualization,

manipulation, and comparison of smooth interpolation surfaces consisting of quartic
TBP. Our work and contributions are in the field of experimental algorithmics and
algorithm engineering. We implemented the optimized algorithm proposed in [17].
Our package is user friendly and has a number of features that allow easy testing
and experimenting. We performed a large number of experiments. The results were
analyzed and compared to reveal themain differences between our algorithm [18] and
the optimized algorithm [17] with respect to various criteria including smoothness
and shape of the resulting surfaces. Moreover, the experiments performed provide
useful information on how to modify the surfaces constructed using the optimized
algorithm [17] to further improve their shape and quality.
The paper is organized as follows. In Section 2 we briefly describe the three

algorithms used, namely Nielson’s MNN, the algorithm [18], and the optimized
algorithm [17]. Detailed information about the implementation and visualization tool
chosen and the main features of the package is provided in Section 3. In Section 4
we present the results from our experimental work. Our conclusions are made in the
final Section 4.

2 Preliminaries and related work

2.1 Nielson’s MNN

Let 𝑛 ≥ 3 be an integer and 𝑃𝑖 := (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 = 1, . . . , 𝑛 be different points in R3.
We call this set of points data. We assume that the projections 𝑉𝑖 := (𝑥𝑖 , 𝑦𝑖) of the
data into the plane 𝑂𝑥𝑦 are different and non-collinear. Emphasizing the fact that 𝑉𝑖
are in a general position, although not necessarily irregularly placed, we call such
data scattered.

Definition 1 A collection of non-overlapping, non-degenerate triangles in 𝑂𝑥𝑦 is a
triangulation of the points 𝑉𝑖 , 𝑖 = 1, . . . , 𝑛, if the set of the vertices of the triangles
coincides with the set of the points 𝑉𝑖 , 𝑖 = 1, . . . , 𝑛.

Hereafter we assume that a triangulation 𝑇 of the points 𝑉𝑖 , 𝑖 = 1, . . . , 𝑛, is given
and fixed. Furthermore, for the sake of simplicity, we assume that the domain 𝐷

formed by the union of the triangles in 𝑇 is connected. In general 𝐷 is a collection
of polygons with holes. The set of the edges of the triangles in 𝑇 is denoted by 𝐸 . If
there is an edge between 𝑉𝑖 and 𝑉 𝑗 in 𝐸 , it will be referred to by 𝑒𝑖 𝑗 or simply by 𝑒
if no ambiguity arises.

Definition 2 A curve network is a collection of real-valued univariate functions
{ 𝑓𝑒}𝑒∈𝐸 defined on the edges in 𝐸 .
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With any real-valued bivariate function 𝐹 defined on 𝐷 we naturally associate the
curve network defined as the restriction of 𝐹 on the edges in 𝐸 , i. e. for 𝑒 = 𝑒𝑖 𝑗 ∈ 𝐸 ,

𝑓𝑒 (𝑡) := 𝐹

( (
1 − 𝑡

∥𝑒∥
)
𝑥𝑖 +

𝑡

∥𝑒∥ 𝑥 𝑗 ,
(
1 − 𝑡

∥𝑒∥
)
𝑦𝑖 +

𝑡

∥𝑒∥ 𝑦 𝑗

)
,

where 0 ≤ 𝑡 ≤ ∥𝑒∥ and ∥𝑒∥ =
√︃
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑦 𝑗 )2.

(1)

Furthermore, according to the context 𝐹 will denote either a real-valued bivariate
function or a curve network defined by (1). We introduce the following class of
smooth interpolants defined on 𝐷

F :=
{
𝐹 (𝑥, 𝑦) ∈ 𝐶1 (𝐷) | 𝐹 (𝑥𝑖 , 𝑦𝑖) = 𝑧𝑖 , 𝑖 = 1, . . . , 𝑁, 𝑓 ′𝑒 ∈ 𝐴𝐶, 𝑓 ′′𝑒 ∈ 𝐿2, 𝑒 ∈ 𝐸

}
,

where 𝐶1 (𝐷) is the class of bivariate functions defined in 𝐷 which possess continu-
ous first order partial derivatives, 𝐴𝐶 is the class of univariate absolutely continuous
functions defined in [0, ∥𝑒∥], and 𝐿2 is the class of univariate functions defined in
[0, ∥𝑒∥] whose second power is Lebesgue integrable.
The restrictions on 𝐸 of the functions in F form the corresponding class of

so-called smooth interpolation curve networks

C(𝐸) :=
{
𝐹|𝐸 = { 𝑓𝑒}𝑒∈𝐸 | 𝐹 (𝑥, 𝑦) ∈ F

}
.

The smoothness of the interpolation curve network 𝐹 ∈ C(𝐸) geometrically means
that at each point 𝑃𝑖 there is a tangent plane to 𝐹, where a plane is tangent to the
curve network at the point 𝑃𝑖 if it contains the tangent vectors at 𝑃𝑖 of the curves
incident to 𝑃𝑖 .
For 𝐹 ∈ C(𝐸) we denote the curve network of second derivatives of 𝐹 by

𝐹′′ := { 𝑓 ′′𝑒 }𝑒∈𝐸 . The 𝐿2-norm of 𝐹′′ is defined by

∥𝐹′′∥𝐿2 (𝑇 ) := ∥𝐹′′∥ =
(∑︁
𝑒∈𝐸

∫ ∥𝑒∥

0
| 𝑓 ′′𝑒 (𝑡) |2𝑑𝑡

)1/2
.

Nielson [11] considered and solved the following extremal problem

(P) Find 𝐹∗ ∈ C(𝐸) such that ∥𝐹∗′′∥ = inf
𝐹∈C(𝐸 )

∥𝐹′′∥.

The unique solution (MNN) to (P) is a cubic curve network and is obtained by
solving a linear system of equations.

2.2 Two algorithms for scattered data interpolation using quartic TBP

Here we briefly present two algorithms for scattered data interpolation using quartic
TBP. Although we use the algorithms with the degree elevated MNN as input, we
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note that both algorithms work also with arbitrary quartic smooth interpolation curve
networks.
Algorithm 1 below was proposed in [18] and improves on Shirman and Séquin’s

algorithm in various ways. Its input is the degree elevated MNN. Algorithm 1
takes a triangle in 𝑇 and the degree-elevated quartic boundary control points of
the corresponding macro-patch and computes 19 control points of the three 𝐺1-
continuous quartic Bézier sub-patches, see Fig. 1.

■ vertices of the sub-patches;
• inner control points on the boundary
of the macro-patch;
□ inner control points of the three inner
boundary curves of the sub-patches;
◦ inner control points of the sub-patches.

Fig. 1 Construction of a 𝐺1-continuous Bézier macro-patch by splitting to three sub-patches.

Algorithm 1 [18]
Step 1. Compute the control points in the first layer:

1.1 Points of type □ are centers of the three small triangles with vertices •■•.
1.2 Then points of type ◦ are computed as described in [18].

Step 2. Compute the control points in the second layer:
2.1 Points of type □ are centers of the three small triangles with vertices ◦□◦
in the first layer.
2.2 Then points of type ◦ are mid-points of the segments with vertices of
type □ in the second layer.

Step 3. Compute the control points in the third layer: The three points of type □
are centers of the small triangles with vertices ◦□◦ in the second layer.

Step 4. Compute the splitting point of type ■ as a center of the triangle with
vertices □ in the third layer.

Algorithm 2 was proposed in [17]. It improves on Algorithm 1 since it reduces the
complexity of the resulting surface and increases its smoothness. First, Algorithm 2
represents all cubic curves comprising the MNN as quartic Bézier curves using
degree elevation. Next, it identifies an optimized set 𝑇𝑠 of triangles where splitting
needs to be applied. For the remaining triangles, those in 𝑇 \𝑇𝑠 , it simply constructs
the standard quartic Bézier patch.



6 K. Vlachkova and K. Radev

Algorithm 2 below takes the MNN as an input and construct a 𝐺1-continuous
interpolating surface 𝐹 (𝑥, 𝑦) defined on𝐷 which consists of triangular quartic Bézier
patches.

Algorithm 2 [17]
Step 1. Compute the control points of the curves in the MNN.
Step 2. Degree elevate all curves to quartic curves.
Step 3. Compute an optimized set 𝑇𝑠 as described in [17].
Step 4. For each 𝜏 ∈ 𝑇 \ 𝑇𝑠 compute 3 inner control points and construct

a macro-patch.
Step 5. For each 𝜏 ∈ 𝑇𝑠 compute 19 inner control points and construct three

sub-patches using Algorithm 1 for splitting.

3 Overview of our work

We implemented a program package for interactive 3D modeling, visualization, and
comparison of smooth interpolation surfaces consisting of quartic TBP. Our main
goal was to implement Algorithm 2 proposed in [17] for constructing a 𝐺1-smooth
piecewise quartic surface that interpolates a given smooth quartic curve network.We
need to visualize the proven mathematical properties of the resulting surface, and to
compare them with the surfaces obtained by some known methods such as Shirman
and Séquin’s and with our Algorithm 1. For this purpose, a computer software for
3D visualization capable of displaying curves and TBP viewed from different angles
and coloured in different colours should be created. Hence, the software needs to be
interactive, easily configured as it runs, and allowing dynamic loading of input data.
Since Algorithm 2 involves many mathematical calculations, mostly on points in R3,
it would be convenient to display the coordinates of these points on the screen, for
example when clicking the mouse, or to be able to hide and display individual parts
of the surface. At the same time the software must be fast enough to work in real time
and to visualize more complex surfaces. Taking into account the above requirements,
we decided to design our software as a Web application. We used only HTML and
JavaScript for the implementation. This decision enabled the resulting surfaces to
be easily rendered using various visualization libraries. We have chosen Plotly [1]
as our main implementation and visualization tool. This software is open source
and is distributed under MIT license [2]. Using Plotly provides conveniences such
as displaying the coordinate system, the coordinates of points when hovering over
them, and controlling the objects rendered. There are, however, some significant
disadvantages: few settings for the light sources and mostly very slow operation
which makes Plotly not suitable for rendering more complex surfaces.
In the implementation the mouse is used to change the camera position. The

surfaces can be edited interactively by rotation and resizing. The user interface for
the program package is shown in Fig. 2.
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Fig. 2 The user interface for the program package created with Plotly.

4 Results from the experiments

Here we present and comment on two examples from the experiments performed
and we share our observations and conclusions. In both examples we use the corre-
sponding MNN which is degree elevated to quartic.

Example 1 We consider data obtained from a symmetric triangular pyramid. We
have 𝑛 = 4, 𝑉1 = (−1/2,−

√
3/6), 𝑉2 = (1/2,−

√
3/6), 𝑉3 = (0,

√
3/3), 𝑉4 = (0, 0),

and 𝑧𝑖 = 0, 𝑖 = 1, 2, 3, 𝑧4 = −1/2. The corresponding triangulation is shown in Fig. 3
(left). The MNN is shown in Fig. 3 (right). The surface generated using Algorithm 1
where all four macro-patches are splitted is shown in 4 (left). The surface generated
using the optimized Algorithm 2 has no splitted macro-patches and is shown Fig. 4
(right). In this case the optimized set 𝑇𝑠 is the empty set.

Example 2 We consider the convex function 𝑓 = exp
(
(𝑥 − 0.5)2 + (𝑦 − 0.5)2

)
which is sampled at 25 points shown in Table 1. The triangulation, which is shown
in Fig. 5 (left), is the Delaunay triangulation and consists of 40 triangles. The corre-
sponding MNN is shown in Fig. 5 (right). The surface generated using Algorithm 1
where all 40 macro-patches are splitted is shown in Fig. 4 (left). The surface gener-
ated using the optimized Algorithm 2 is shown Fig. 4 (right). The optimized set 𝑇𝑠
is marked in black and consists of 6 triangles.
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Fig. 3 Example 1: (left) The triangulation; (right) The MNN

Fig. 4 Example 1. The surface interpolating the degree elevatedMNN: (left) The surface generated
using Algorithm 1 where all macro-patches are splitted; (right) The surface generated using the
optimized Algorithm 2 where no macro-patch is splitted.

Table 1 The data for Example 2

𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13
𝑥𝑖 .21 .46 .83 .97 .67 .53 .28 .07 .06 .25 .48 .67 .77
𝑦𝑖 .88 .93 .89 .54 .71 .74 .77 .70 .43 .56 .61 .54 .45

𝑖 14 15 16 17 18 19 20 21 22 23 24 25
𝑥𝑖 .90 .66 .50 .32 .25 .46 .57 .75 .94 .46 .18 .14
𝑦𝑖 .31 .35 .47 44 .31 .33 .20 .25 .05 .07 .19 .06

5 Conclusion and future work

In this paper we presented a program package for interactive implementation and
3D visualization of smooth surfaces consisting of quartic TBP that interpolate given
smooth curve network defined on the edges of an associated triangulation. The
package are made user friendly and possess a wide range of features that allow
experimenting with various data set and curve networks. Given the importance of
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Fig. 5 Example 1: (left) The Delaunay triangulation; (right) The MNN

Fig. 6 Example 2: The surface interpolating the degree elevatedMNN: (left) The surface generated
using Algorithm 1 where all macro-patches are splitted; (right) The surface generated using the
optimized Algorithm 2. The optimized set 𝑇𝑠 is marked in black and consists of 6 triangles.

surface modeling and simulation techniques in practice, it is important to better
understand and engineer software packages based on various criteria and algorithms
for surface manipulation. We plan to further expand the package by adding new
features to it, e.g. visualizing the highlight lines and gaussian curvature of the
surfaces displayed.
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