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Abstract It is known that Bézier curves and surfaces may have multiple represen-
tations by different control polygons. The polygons may have different number of
control points and may even be disjoint. This phenomenon causes difficulties in
variety of applications where it is important to recognize cases where different repre-
sentations define same curve (surface) or partially coincident curves (surfaces). The
problem of finding whether two arbitrary parametric polynomial curves are the same
has been addressed in Pekerman et al. [Are two curves the same?, Comput.-Aided
Geom. Des. and Appl., 2(1-4)(2005), pp. 85-94]. There the curves are reduced into
canonical irreducible forms using the monomial basis, then they are compared and
their shared domains, if any, are identified. Here we present an alternative geomet-
ric algorithm based on subdivision that compares two input control polygons and
reports the coincidences between the corresponding Bézier curves if they are present.
We generalize the algorithm for tensor product Bézier surfaces. The algorithms are
implemented and tested using Mathematica package. The experimental results are
presented.

1 Introduction

Comparing Bézier curves and surfaces for coincidence is an important problem in
computer-aided design (CAD) which arises in various applications. Suppose we are
given the control polygons of two curves (surfaces) which are obtained by different
sources, e. g. they can be generated by different software packages. The curves
(surfaces) have to be stitched together to obtain a new curve (surface) which is
continuous. It is possible that the two control polygons may have different number
of control points and may even be disjoint but nevertheless they represent same
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curve (surface), see Fig. 2. Therefore it is important to find out whether the control
polygons represent same curve (surface) and in this case to determine the coincident
part of the two curves (surfaces). By coincident curves (surfaces) we mean that they
occupy the same locus of points in R3, i. e. they are geometrically equivalent as
defined by Denker and Heron [4]. A shared domain of two curves (surfaces) with
same parametrization is the intersection of their domains of definition.

Different representations of a parametric polynomial curve occur if it has been
degree elevated and/or reparameterized by a composition with a polynomial. While
the degree elevation is comparatively easy to be detected, it is usually hard to find
out whether the curve has undergone polynomial composition. Decomposition of
polynomials is a classical problem in computer algebra. The first algorithm for
polynomial decomposition was proposed by Barton and Zippel [1, 2]. An alternative
decomposition algorithm was proposed by Kozen and Landau [6]. Later, it has been
improved by von zur Gathen [5]. Today polynomial decomposition is a standard
built-in function in the computer algebra systems as Maple (the function compoly),
Matlab (the function polylib:decompose), Mathematica (the function Decompose).
The applied algorithms are known for some of these systems. For example, Matlab
applies Barton and Zippel’s algorithm [2]. Currently, Mathematica does not disclose
such information to the public.

A curve is irreducible if it is not a result of a polynomial composition and has
not been degree elevated. Sánchez-Reyes [8] has showed uniqueness of the control
points (up to reverse order) of an irreducible Bézier curve of arbitrary degree. He
pointed out that this result is a straightforward consequence of a previous and more
general result by Berry and Patterson [3] for rational Bézier curves. The uniqueness
of the control points for cubic curves has also been studied by Wang et al. [10].

The problem of finding whether two arbitrary polynomial curves are the same
has been considered by Pekerman et al. [7] where an algorithm for a polynomial
decomposition is proposed and used. The authors do not compare the algorithm
to any of the previously known algorithms as [1, 2, 5, 6]. They point out that the
computations can be done efficiently since the degree of the polynomial to be
decomposed is usually low for practical purposes. In [7] the curves are reduced into
canonical irreducible forms, then they are compared and their shared domain, if any,
is identified.

Here we present an alternative geometric algorithm for comparing Bézier curves
for coincidence. Our algorithm works in two phases. In the first phase the control
polygons are tested for reducibility. We adopt a set of routines from Mathematica
package and transform the control polygons to an irreducible form which is unique
as shown in [8]. In the second phase the obtained irreducible control polygons are
checked for coincidences. We use a new geometric approach based on subdivision.
In this approach the usage of a monomial basis and consequent conversion into
canonical form are avoided. In addition, simple geometric conditions for checking
whether two control polygons define different irreducible curves are obtained. Given
two irreducible Bézier curves our Algorithm 1 reports whether they are different,
disjoint, or coincident and in that case reports the control points of the coincident
part.
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We generalize Algorithm 1 for the case of tensor product Bézier surfaces. Since
computer algebra systems currently do not support bivariate polynomial decomposi-
tion, our aim was to reduce the problem for surfaces to the problem for curves.

We prove in Theorem 1 that two irreducible tensor product Bézier surfaces of
same degree coincide if and only if their control polygons coincide (up to different
enumeration of the control points). Given two irreducible tensor product Bézier
curves of same degree (m,n) our Algorithm 2 reports whether they are different,
disjoint, or coincident and in that case reports the control points of the coincident
part. Coincidences also can occur in the case where the degrees of the two irreducible
surfaces are (n,m) and (n+m,n+m), respectively. Our algorithm doesn’t cover this
case.

We implemented and tested our algorithms using Mathematica package. Real
examples illustrating our presentation are included.

The paper is organized as follows. In Sect. 2 we consider the problem for Bézier
curves and propose Algorithm 1 based on subdivision that reports two irreducible
Bézier curves as different, disjoint, or coincident. In case of coincidence Algorithm 1
reports the control points of the coincident part. The problem for tensor product Bézier
surfaces is considered in Sect. 3 and Algorithm 2 that compares two irreducible tensor
product Bézier surfaces of same degree for coincidence is proposed. Algorithm 2
reports these surfaces as different, disjoint, or coincident and in that case reports the
control points of the coincident part.

2 Coincidence of Bézier curves

In this section we present an algorithm based on subdivision for comparing Bézier
curves for coincidence. Our algorithm takes as input two irreducible Bézier curves of
same degree b1(t), t ∈ [0,1], and b2(u), u ∈ [0,1], and reports if they are different. If
not the algorithm reports them as disjoint or coincident. In the case of coincidence
the algorithm reports the control points of their coincident part.

Let b(t) = ∑
m
i=0 biBm

i (t), where bi, i = 0, . . . ,m, are points in R3 and Bm
i (t) are

the Bernstein polynomials defined for 0≤ t ≤ 1 by Bm
i (t) :=

(m
i

)
t i(1− t)m−i, where(m

i

)
for 0≤ i≤ m are the binomial coefficients. We assume that

(m
i

)
= 0 if i < 0 or

i > m.
The curve b is degree elevated if and only if ∆ mb0 = 0, where ∆ r is the

forward finite difference of order r, r ≥ 1, defined recursively by ∆ 0bi = bi,
∆ rbi = ∆ r−1bi+1−∆ r−1bi. We note that ∆ mb0 is the coefficient of tm in the canoni-
cal form of b(t). If b has been degree elevated then the control points b̂i of the degree
reduced curve are computed recursively as

b̂i =
m

m− i
bi−

i
m− i

b̂i−1, i = 0, . . . ,m−1.

In order to check b for a composition by a polynomial we use the built-in function
Decompose in Mathematica. This function returns the decomposed curve b̃(t) in
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its canonical form b̃(t) = ∑
m1
i=0 ait i, where m1 ≤ m, ai ∈ R3. Then the control points

of b̃(t) are

b̃i =
i

∑
j=0

( i
j

)(m1
j

)a j, i = 0, . . . ,m1.

Degree elevation and decomposition are non-commutative operations, as pointed
out in [7]. Hence, in order to check the Bézier curve b for irreducibility we have to
perform alternate check for degree elevation and decomposition while both attempts
fail. Finally, we obtain the control points pi, i = 0, . . . ,n of the irreducible form of b
and we store the last two finite differences ∆ n−1b0 and ∆ nb0. Note that ∆ nb0 6= 0.

Let b1(t) = ∑
n
i=0 biBn

i (t), t ∈ [0,1], and b2(u) = ∑
n
i=0 piBn

i (u), u ∈ [0,1], n ∈ N,
n ≥ 2, be two irreducible Bézier curves such that their control polygons do not
coincide. Our aim is to check out whether b1 and b2 represent same curve and in
this case to find their coincident part, if any. Suppose that b1 and b2 represent same
curve. Then we can consider one of them, say b2, as obtained from b1 by subdivision
at two parameters a and b, a,b ∈ R, see Fig. 1. Hence, b2 is defined in the interval

Fig. 1: Curve b2 with control points pi, i = 1, . . . ,n is obtained from curve b1 with control points
bi, i = 1, . . . ,n, by subdivision at a and b, where a, b ∈ R.

with endpoints a and b which are uniquely defined. This interval is an image of the
interval [0,1] by the affine map t = (b−a)u+a, 0≤ u≤ 1. We have

n

∑
i=0

piBn
i (u) =

n

∑
i=0

biBn
i ((b−a)u+a), 0≤ u≤ 1. (1)

Next, we express a and b in terms of the control points pi,bi, i = 0, . . . ,n. We
differentiate n−1 times both sides of (1). The derivative of order n−1 is obtained
by applying consecutively n−1 finite differences and one evaluation by de Casteljau
algorithm. We have

n!
n−(n−1)

∑
i=0

∆
n−1piB

n−(n−1)
i (u) = n!(b−a)n−1

n−(n−1)

∑
i=0

∆
n−1biB

n−(n−1)
i ((b−a)u+a).

(2)
Hence, from (2) we have
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(1−u)∆ n−1p0 +u∆
n−1p1 = (b−a)n−1((1−a− (b−a)u)∆ n−1b0

+(a+(b−a)u)∆ n−1b1
)
.

(3)

For the derivatives of order n in both sides of (1) we obtain

∆
np0 = (b−a)n

∆
nb0. (4)

From (4) we have b−a= n
√
|∆ np0|/|∆ nb0| for n odd, and b−a=± n

√
|∆ np0|/|∆ nb0|

for n even. Note that we have stored in advance ∆ n−1p0, ∆ np0, ∆ n−1b0, ∆ nb0 while
performing check for degree elevation and we have ∆ np0 6= 0 and ∆ nb0 6= 0.

We have from (3) for u = 0 and u = 1, respectively

∆
n−1p0 = (b−a)n−1((1−a)∆ n−1b0 +a∆

n−1b1
)
, (5)

∆
n−1p1 = (b−a)n−1((1−b)∆ n−1b0 +b∆

n−1b1
)
. (6)

Then we compute

A =
∆ n−1p0

(b−a)n−1 −∆
n−1b0, B =

∆ n−1p1

(b−a)n−1 −∆
n−1b0 = A+

∆ np0

(b−a)n−1 . (7)

From (5) and (6) we obtain

a∆
nb0 = A, b∆

nb0 = B. (8)

In the case where n is even there are two possibilities for A and B in (8) but only one
of them is correct. For the other possibility there exist no a and b that satisfy (8).

We note that in the case where a,b 6∈ [0,1] it is better to subdivide b2 instead of
b1 to avoid extrapolation which is not numerically stable for large parameter values.

The geometric meaning of (4) and (8) is that the four vectors ∆ nb0, ∆ np0, A, and
B are collinear. The corresponding coefficients of proportion are (b−a)n in (4), a
and b in (8). Another interpretation of the geometric meaning of the parameters a
and b was proposed by Sánchez-Reyes in [9].

The next lemma provides simple sufficient geometric conditions for two irre-
ducible Bézier curves to be different.

Lemma 1. The irreducible Bézier curves b1 and b2 are different if any of the next
three statements is true.

(i) ∆ nb0 and ∆ np0 are not collinear;
(ii) n is even and ∆ nb0 and ∆ np0 have opposite directions;
(ii) ∆ nb0 is collinear with at most one of A and B defined by (7).

Proof. Statements (i) and (ii) follows from (4). Statement (iii) follows from (8). �

Next, we propose Algorithm 1 for comparing two irreducible Bézier curves for
coincidence.
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Algorithm 1 Comparison for Coincidence of two Irreducible Bézier Curves
Input: Irreducible Bézier curves b1 and b2 represented by their control points

{bi}n
i=0, {pi}n

i=0, respectively; ∆ n−1b0, ∆ nb0; ∆ n−1p0, ∆ np0.
Output: (i) b1 and b2 are different;

(ii) b1 and b2 are disjoint;
(iii) b1 and b2 have coincident part b̄. Report the control points of b̄.

Step 1. if ∆ nb0 and ∆ np0 are not collinear
then output (i) and stop;

else if n is even and ∆ nb0 and ∆ np0 have opposite directions
then output (i) and stop;

else compute l = n
√
|∆ np0|/|∆ nb0|, A = ∆ n−1p0/ln−1−∆ n−1b0,

B = A+∆ np0/ln−1

end if
end if

Step 2. if both A and B are collinear to ∆ nb0
then go to Step 4;

else if n is odd
then output (i) and stop;

else compute A1 =−A−2∆ n−1b0 and B1 =−B−2∆ n−1b0
end if

end if
Step 3. if ∆ nb0 is collinear with at most one of A1 and B1

then output (i) and stop;
else go to Step 4

end if
Step 4. Compute a and b such that a∆ nb0 = A, b∆ nb0 = B.
Step 5. Subdivide b1 at a and b and compare the obtained control points to pi, i = 0, . . . ,n.

if there are at least two corresponding non-coincident control points
then output (i) and stop;

else compute the intersection I of [0,1] with the interval with endpoints a and b.
end if
if I = /0 then output (ii) and stop;

else output (iii) with the control points computed in Step 5 and stop
end if

In Example 1 the curves b1 and b2 are compared for coincidence using Algo-
rithm 1.

Example 1. The control points of the curve b1 of degree 4 and b2 of degree 8 are
shown in Table 1. The curve b1 is irreducible. After decomposition we obtain that b2

is a result of a composition by the polynomial t2 + t of the curve

b(t) =
(
−1+12t−30t2 +24.8t3−4.6t4,−1+4.8t−4.2t2−0.4t3−0.1t4).

The irreducible form of b2 has degree n = 4, its control points are shown in Table 1
and the control polygons of both forms of b2 are shown in Fig. 2. The control
polygons of the irreducible curves b1 and b2 are shown in Fig. 3a. By applying
Algorithm 1 we obtain that b2 is a result of subdivision of b1 at a =−.05 and b = .4.
The control points of the coincident part b̄ of b1 and b2 are shown in Table 1. The
curve b̄ and its control polygon are shown in Fig. 3b.
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Table 1: Comparison of Bézier curves b1 and b2 for coincidence

b1 b2 irreducible b2 coincident part b̄

(-1, -1) (-1.67813, -1.25045) (-1.67813, -1.25045) (-1, -1)
(2, .2) (-1.06849, -1.04105) (0.030555, -0.663532) (0.2, -0.52)
(0, .7) (-0.513367, -0.822876) (0.59886, -0.21639) (0.6, -0.152)
(-.8, .4) (-0.0474957, -0.602289) (0.61272, 0.08232) (0.5968, 0.0976)
(1.2, -.9) (0.300317, -0.386845) (0.46944, 0.21984) (0.46944, 0.21984)

(0.513146, -0.18546)
(0.59217, -0.0086048)
(0.5616, 0.131384)
(0.469442, 0.219838)

Fig. 2: The control polygons of curve b2 and its irreducible form. The corresponding control points
are shown in Table 1.

a. b.

Fig. 3: a. Curve b and the control polygons of the irreducible form of b1 and b2; b. Curve b and
the control polygon of the coincident part b̄ of b1 and b2.
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3 Coincidence of Tensor Product Bézier Surfaces

In this section we present an algorithm for comparing tensor product Bézier surfaces
for coincidence. Our algorithm takes as input two irreducible tensor product Bézier
surfaces of same degree b1(s, t), (s, t) ∈ [0,1]× [0,1], and b2(u,v), (u,v) ∈ [0,1]×
[0,1], and reports if they are different. If not then the algorithm reports them as
disjoint or coincident. In the case of coincidence the algorithm reports the control
points of their coincident part.

We start with a definition of irreducibility of tensor product Bézier surface which
is consistent with the analogous definition for Bézier curve.

Definition 1. The tensor product Bézier surface b(u,v) = ∑
n
i=0 ∑

m
j=0 bi jBn

i (u)B
m
j (v),

0 ≤ u ≤ 1, 0 ≤ v ≤ 1, m,n ∈ N, is irreducible if the curves c1
j(u) with control

points {bi j}n
i=0, j = 0, . . . ,m, and c2

i (v) with control points {bi j}m
j=0, i = 0, . . . ,n, are

irreducible.

Next, we prove a theorem that provides necessary and sufficient condition for
coincidence of two irreducible tensor product Bézier surfaces.

Theorem 1. Let b1(s, t) = ∑
n
i=0 ∑

m
j=0 bi jBn

i (s)B
m
j (t) defined for (s, t) ∈ [0,1]× [0,1],

and b2(u,v) = ∑
n
i=0 ∑

m
j=0 pi jBn

i (u)B
m
j (v) defined for (u,v) ∈ [0,1]× [0,1], be irre-

ducible Bézier surfaces. Then b1 and b2 coincide if and only if their control polygons
coincide (up to different enumeration of the control points).

Proof. ⇒ Suppose that m 6= n. Since b1 and b2 coincide then there exist smooth
functions s=ϕ(u,v) and t =ψ(u,v) such that b1(ϕ(u,v),ψ(u,v))≡ b2(u,v) and the
boundaries of b1 and b2 coincide. Suppose that b00 ≡ p00. Hence, b1(s,0) coincides
with b2(u,0). Therefore b1(ϕ(u,0),ψ(u,0))≡ b2(u,0) for 0≤ u≤ 1 and since both
curves are irreducible it follows

ϕ(u,0) = u, ψ(u,0) = 0. (9)

Moreover, b1(ϕ(0,v),ψ(0,v))≡ b2(0,v) for 0≤ v≤ 1, thus

ϕ(0,v) = 0, ψ(0,v) = v. (10)

We expand ϕ and ψ as Taylor series,

ϕ(u,v) =
∞

∑
i=0

∞

∑
j=0

αi juiv j, ψ(u,v) =
∞

∑
i=0

∞

∑
j=0

βi juiv j.

From (9) and (10) it follows ϕ(u,v) = u + ∑
∞
i=1 ∑

∞
j=1 αi juiv j and ψ(u,v) = v +

∑
∞
i=1 ∑

∞
j=1 βi juiv j. Therefore,

b1(ϕ(u,v),ψ(u,v)) =
n

∑
i=0

m

∑
j=0

bi jBn
i
(
u+

∞

∑
i=1

∞

∑
j=1

αi juiv j)Bm
j
(
v+

∞

∑
i=1

∞

∑
j=1

βi juiv j).
(11)
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Suppose that ϕ(u,v) 6= u. Then there exists αi j 6= 0 for some i, j, 1≤ i, j < ∞. Hence

deg
( ∞

∑
i=1

∞

∑
j=1

αi juiv j)≥ 2 ⇒ deg
(
Bn

i (u+ · · ·
)
≥ 2n.

We obtain that the degree of the polynomial in the right hand side in (11) is ≥ 2n+m
which is not possible since b1 has degree n+m. Therefore ϕ(u,v) = u. Similarly we
obtain ψ(u,v) = v and hence b1(u,v)≡ b2(u,v).

The other possibilities for the boundaries are treated analogously. In the case
where b00 = pn0 we obtain ϕ(u,v) = 1−u, ψ(u,v) = v, and b1(1−u,v) = b2(u,v).
If b00 = p0m then b1(u,1− v) = b2(u,v), and if b00 = pnm then b1(1−u,1− v) =
b2(u,v). In the case where m = n there are four more possibilities:

b00 = p00, bn0 = p0m ⇒ b1(v,u) = b2(u,v),
b00 = pn0, bn0 = pnm ⇒ b1(1− v,u) = b2(u,v),
b00 = p0m, bn0 = p00 ⇒ b1(v,1−u) = b2(u,v),
b00 = pnm, bn0 = pn0 ⇒ b1(1− v,1−u) = b2(u,v).

In all cases the control polygons of b1 and b2 coincide up to different enumeration
of the control points.
⇐ Straightforward �

Next, we propose Algorithm 2 that compares for coincidence two irreducible tensor
product Bézier surfaces of degree (n,m). In Example 2 tensor product Bézier surfaces
b1 and b2 are compared for coincidence using Algorithm 2.

Example 2. The control points of the irreducible tensor product Bézier surfaces b1

and b2 of degree (2,3) are shown in Table 2. The two surfaces and their control
polygons are shown in Fig. 4a. and Fig. 4b., respectively. In Fig. 5a. b1 and b2 are
shown together. Their coincident part b̄ with its control polygon is shown in Fig. 5b..
This surface is obtained by subdivision of b1 in direction u at a = 0, b = 1/2 and
direction v at c = 1/6, d = 3/4. The corresponding control points are shown in
Table 2.

4 Conclusion

In this paper we present a new geometric algorithm based on subdivision that com-
pares irreducible Bézier curves for coincidence and reports their coincident part if it
is present. We generalize the algorithm to pairs of irreducible tensor product Bézier
surfaces of degree (n,m), m,n ∈N. We believe that our approach can be successfully
applied to the open problem for comparing pairs of irreducible tensor product Bézier
surfaces of degree (n,m) and (n+m,n+m), respectively. Another task for future
research is to develop and implement an algorithm for comparing triangular Bézier
surfaces for coincidence.
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Algorithm 2 Comparison for Coincidence of two Irreducible Tensor Product Bézier
Surfaces
Input: Irreducible Bézier surfaces b1 and b2 represented by their control points

{bi j}n,m
i=0, j=0, {pi j}n,m

i=0, j=0, respectively
Output: (i) b1 and b2 are different;

(ii) b1 and b2 are disjoint;
(iii) b1 and b2 have coincident part b̄. Report the control points of b̄.

Step 1. Set M0 := [0,1].
for j = 0, . . . ,m apply Algorithm 1 to curves c1

j and c2
j with control points

{bi j}n
i=0 and {pi j}n

i=0, respectively.
if c1

j and c2
j are different

then output (i) and stop;
else find the corresponding coincidence interval I j and set M j+1 = M j ∩ I j

end if
end for

Step 2. if Mm+1 := [a,b] 6= /0
then for j = 0, . . . ,m subdivide c1

j and c2
j at a and b. Use the same notation

for the new control points end for;
else go to Step 3

end if
Step 3. Set N0 := [0,1].

for i = 0, . . . ,n apply Algorithm 1 to curves c̄1
i and c̄2

i with control points
{bi j}m

j=0 and {pi j}m
j=0, respectively.

if c̄1
i and c̄2

i are different
then output (i) and stop;

else find the corresponding coincidence interval Ji and set Ni+1 = Ni∩ Ji
end if

end for
Step 4. if Nn+1 := [c,d] 6= /0

then for i = 0, . . . ,n subdivide c̄1
i at c and d

end for
output (iii) and stop;

else output (ii) and stop
end if

a. b.

Fig. 4: The irreducible tensor product Bézier surfaces b1 and b2 of degree (2,3) with their control
polygons: a. surface b1; b. surface b2. The corresponding control points are shown in Table 2.
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Table 2: Comparison of the irreducible tensor product Bézier surfaces b1 and b2 for
coincidence

b1 (0, 0, 0) (0, 0.7, -0.5) (0, 2, -.8)
(1, 0, 1) (1, 1, 0) (1, 1, 1)
(2, 0, .75) (2, 1, 1.2) (2, 2, 0.75)
(3, -1, 0.15) (3, 1, 0.4) (3, 2, 0.2)

b2 (-1/2, 0.223122, -0.663304) (-1/2, 0.685108, -0.814381) (-1/2, 1.70446, -1.34961)
(1/6, 0.253472, 0.0865162) (1/6, 0.716898, -0.317969) (1/6, 1.14913, -0.292144)
(5/6, 0.322917, 0.517303) (5/6, 0.799306, 0.259462) (5/6, 1.1651, 0.332682)
(3/2, 0.225694, 0.606424) (3/2, 0.81875, 0.504948) (3/2, 1.26719, 0.533203)

b̄ (0, 0.25, -0.161111) (0, 0.716667, -0.433333) (0, 1.3875, -0.6375)
(1/2, 0.277778, 0.280556) (1/2, 0.754167, -0.05) (1/2, 1.1625, -0.00625)
(1, 0.298611, 0.539583) (1, 0.804167, 0.320833) (1, 1.19062, 0.382812)
(3/2, 0.225694, 0.606424) (3/2, 0.81875, 0.504948) (3/2, 1.26719, 0.533203)

a. b.

Fig. 5: a. The irreducible tensor product Bézier surfaces b1 and b2 from Example 2; b. The
coincident part b̄ of b1 and b2 and its control polygon. The corresponding control points are shown
in Table 2.
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