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Abstract. Minimal surfaces with isothermal parameters admitting Bézier representation were studied by Cosı́n and Monterde. They
showed that, up to an affine transformation, the Enneper surface is the only bi-cubic isothermal minimal surface. Here we study
bi-quartic isothermal minimal surfaces and establish the general form of their generating functions in the Weierstrass representation
formula. We apply an approach proposed by Ganchev to compute the normal curvature and show that, in contrast to the bi-cubic
case, there is a variety of bi-quartic isothermal minimal surfaces. Based on the Bézier representation we establish some geometric
properties of the bi-quartic harmonic surfaces. Numerical experiments are visualized and presented to illustrate and support our
results.

1 INTRODUCTION

Minimal surfaces have recently become subject of intensive study in physical and biological sciences, e.g., ma-
terials science and molecular engineering which is due to its area minimizing property. They are used in modeling
physical phenomena as soap films, block copolymers, protein folding, solar cells, nanoporous membranes, etc. Min-
imal surfaces found applications also in architecture, CAGD, and computer graphics where Bézier polynomials and
splines are widely used to efficiently describing, representing and visualizing 3D objects. Hence it is important to
know minimal surfaces in polynomial form of lower degrees. Bi-cubic polynomial minimal surfaces are studied in
[1]. Polynomial surfaces of degree 5 and 6 are studied in [6] and [7] where some interesting surfaces are described
and their properties are examined. Examples of polynomial minimal surfaces of arbitrary degree are presented in [8].

In Section 3 we specify the result of Cosı́n and Monterde [1] concerning bi-cubic polynomial minimal surfaces.
We note that their proof that these surfaces coincide up to affine transformation with the classical Enneper surface
concerns the case of surfaces in isothermal parameters. In Section 4 we consider an analogous problem for polynomial
surfaces defined by charts x(u, v) of degree 4 on both u and v. It turns out that they are more various than the bi-cubic
ones, so they may be more useful in computer graphics. In this paper we use a new approach to minimal surfaces
proposed by Ganchev [2] as well as the method from [4] to obtain a parametrization of the surface in canonical
parameters.

In Section 5 we consider bi-quartic harmonic Bézier surfaces. We show that for a special choice of nine boundary
control points the corresponding harmonic Bézier surface is uniquely determined and is symmetric with respect to
one of the coordinate planes Oxy, Oxz, and Oyz. Based on the Bézier representation we apply computer modeling and
visualization tools to illustrate and support our results.

2 PRELIMINARIES

Let S be a regular surface. Then S is locally defined by a chart

x = x(u, v) (u, v) ∈ U ⊂ R
2 .
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As usual we denote by xu, xv, xuu,... the partial derivatives of the vector function x(u, v). Then the coefficients of the
first fundamental form are given by the inner products

E = x2
u , F = xuxv , G = x2

v

and the unit normal is

U =
xu × xv

|xu × xv| ·

Then the coefficients of the second fundamental form are defined by

L = U xuu, M = U xuv, N = U xvv.

The Gauss curvature K and the mean curvature H of S are given by

K =
LN − M2

EG − F2
, H =

EN − 2FM +GL
2(EG − F2)

,

respectively. Note that the Gauss curvature and the mean curvature (up to a sign) of a surface do not depend on the
chart. The surface S is said to be minimal if its mean curvature vanishes identically. In this case the Gauss curvature

is negative and the normal curvature of S is the function ν =
√−K, see [2].

We say that the chart x(u, v) is isothermal or that the parameters (u, v) are isothermal if E = G, F = 0. It is always
possible to change the parameters (u, v) so that the resulting chart be isothermal. We note however that this change of
the parameters to isothermal ones is in general nonlinear.

When the chart is isothermal it is possible to use complex functions to investigate it. We shall explain briefly this.
Namely let f (z) and g(z) be two holomorphic functions (actually sometimes they are taken meromorphic). Define the
Weierstrass complex curve Ψ(z) by

Ψ(z) =

z∫
z0

(
1

2
f (z)(1 − g2(z)),

i
2

f (z)(1 + g2(z)), f (z)g(z)

)
dz . (1)

Then Ψ(z) is a minimal curve, i.e., (Ψ′(z))2 = 0, and its real and imaginary parts

x(u, v) = ReΨ(z) and y(u, v) = ImΨ(z)

are minimal charts. Moreover, they are isothermal and are harmonic functions (i.e., Δx = 0, Δy = 0, where Δ is the
Laplace operator) as the real and complex part of a holomorphic function. Conversely, every minimal surface can be
defined at least locally in this way. Of course a minimal surface can be generated by the Weierstrass formula with
different pairs of complex functions f (z), g(z).

It is easy to see that the coefficients of the first fundamental form of a chart defined via the Weierstrass formula
with functions f (z), g(z) are given by

E = G =
1

4
| f |2(1 + |g|2)2, F = 0. (2)

The normal curvature is computed to be

ν =
4|g′|

| f |(1 + |g|2)2
, (3)

see [3], Theorem 22.33.
Recently Ganchev [2] has proposed a new approach to minimal surfaces. Briefly speaking he introduces spe-

cial parameters called canonical principal parameters. A chart with such parameters is isothermal. Moreover, the
coefficients of the two fundamental forms are given by

E = 1
ν
, F = 0, G = 1

ν
,

L = 1, M = 0, N = −1.
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His idea leads to the fact that the real part of the minimal curve

Φ(w) = −
z∫

z0

(
1

2

1 − g̃2(w)

g̃′(w)
,

i
2

1 + g̃2(w)

g̃′(w)
,

g̃(w)

g̃′(w)

)
dw (4)

is a minimal surface in canonical principal parameters. Note that this is the Weierstrass formula with f (z) = −1/g̃′(z),
g(z) = g̃(z).

We shall use also the following theorems:
Theorem A. [2] If a surface is parametrized with canonical principal parameters, then the normal curvature

satisfies the equation
Δ ln ν + 2ν = 0. (5)

Conversely, for any solution ν(u, v) of equation (5) there exists a unique (up to position in the space) minimal surface
with normal curvature ν(u, v), where (u, v) are canonical principal parameters. �

Theorem B. [4] Let the minimal surface S be defined by the real part of (1). Any solution of the differential
equation

(z′(w))2 = − 1

f (z(w))g′(z(w))
(6)

defines a change of the isothermal parameters of S to canonical principal parameters. Moreover, the function g̃(z) that
defines S via the Ganchev’s formula (4) is given by g̃(w) = g(z(w)). �

The canonical principal parameters (u, v) are determined uniquely up to the changes

u = εū + a,
v = εv̄ + b, ε = ±1, a = const, b = const.

3 BI-CUBIC MINIMAL SURFACES

By investigating minimal Bézier surfaces Cosı́n and Monterde [1] formulate that any bi-cubic minimal surface
defined by

x(u, v) =

⎛⎜⎜⎜⎜⎜⎜⎝
3∑

i, j=0

ai juiv j,

3∑
i, j=0

bi juiv j,

3∑
i, j=0

ci juiv j

⎞⎟⎟⎟⎟⎟⎟⎠
is, up to affine transformation in the space, actually an affine reparametrization of the classical Enneper surface

enneper(u, v) =
1

2

(
u − u3

3
+ uv2,−v +

v3

3
− u2v, u2 − v2

)
.

(This chart of the Enneper surface is obtained from the Weierstrass formula with f (z) = 1, g(z) = z.) We note that
their proof actually refers to bi-cubic isothermal minimal charts. Indeed, as we mentioned in Section 2, the change
of parameters to isothermal ones is in general nonlinear. Below we give a simple example of a bi-cubic minimal chart
that can not be transformed by an affine transformation into an isothermal one.

Example. Consider the bi-cubic chart

x(u, v) =
1

2

(
uv − u3v3

3
+ uv3,−v +

v3

3
− u2v3, u2v2 − v2

)
. (7)

It can be shown by direct computation that this chart defines a minimal surface. Of course we can simply remark that
this is a reparametrization of enneper(u, v) with u replaced by uv, so the mean curvature vanishes identically.

Let us make an affine transformation of the parameters (u, v):

u = a1ū + b1v̄ + c1

v = a2ū + b2v̄ + c2

with nonzero Jacobian, i.e.,
J = a1b2 − a2b1 � 0. (8)
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We shall try to determine the coefficients ai, bi, ci, so that the chart

x̄(ū, v̄) = x(a1ū + b1v̄ + c1, a2ū + b2v̄ + c2)

be isothermal. Actually we shall see what follows only from F = 0. A direct computation shows that F = x̄ū · x̄v̄ =
1
4
F1 · F2, where

F1 =
(
1 + (c2 + a2ū + b2v̄)2(1 + (c1 + a1ū + b1v̄)2))2

,

F2 = a2
2b1ū(2a1ū + b1v̄ + c1) + a1(b2v̄ + c2)

(
b1c2 + b2(a1ū + 2b1v̄ + c1)

)
+a2

(
b1c2(3a1ū + b1v̄ + c1) + b2

(
1 + c2

1 + 3a1c1ū + 2a2
1ū2 + 3b1(c1 + 2a1ū)v̄ + 2b2

1v̄2)).
Since F1 is positive, the vanishing of F implies F2 = 0. Hence the coefficients in F2 must be zero. In particular the
coefficients of ū2, v̄2, ūv̄ are

a1a2(a2b1 + a1b2) = 0,
b1b2(a2b1 + a1b2) = 0,
(a2b1 + a1b2)2 + 4a1a2b1b2 = 0.

These equations imply immediately

a1a2b1b2 = 0, a2b1 + a1b2 = 0. (9)

Let, e.g., a1 = 0. From (9) it follows a2b1 = 0, which contradicts (8). So it is impossible to make an affine transforma-
tion of the parameters in (7) to obtain an isothermal chart.

Remark. In view of the above notes the problem of existing bi-cubic minimal surfaces different from the En-
neper one is still open. More generally it will be interesting to obtain a method for finding polynomial minimal
non-isothermal charts.

4 BI-QUARTIC MINIMAL SURFACES IN ISOTHERMAL PARAMETERS

In this section we examine minimal surfaces represented by isothermal polynomial charts of degree 4 in both
u, v. We may expect that there exists more than one such surface, but it is interesting to know “how many” are there.

So consider the chart

x(u, v) =

4∑
i, j=0

vi juiv j,

where vi j = (ai j, bi j, ci j) are vectors in R
3. Using F = 0 and looking on its coefficient of u7v7 we obtain v44 = 0.

Analogously we derive consecutively v43 = 0, v34 = 0, v42 = 0, v24 = 0, v41 = 0, v14 = 0, v33 = 0, v32 = 0, v23 = 0.

It is known that any minimal isothermal chart is harmonic, see, e.g., [3]. In our case this implies

v02 = −v20, v21 = −3v03, v22 = −6v40,
v12 = −3v30, v13 = −v31, v04 = v40.

Substituting these in F and looking on the coefficients of u6 and u5v we obtain also v31v40 = 0, v2
31 − 16v2

40 = 0. If
v40 = o the chart is not of degree 4. So we assume v40 � o. Up to position in space and symmetry we may take

v40 = (p, 0, 0), v31 = (0, 4p, 0), where p � 0.

Now the coefficients of u5 and u4v in F give b03+a30 = 0 and a03−b30 = 0. Using this we can calculate the derivatives
xu and xv. Let the functions f (z) and g(z) give the Weierstrass representation of the surface. Denote by (φ1, φ2, φ3) the
derivative of Ψ. Then Ψ′ = (φ1, φ2, φ3) = xu − ixv. In our case a direct computation shows

φ1 = −ia01 + a10 + (u + iv)
(
−ia11 + 2a20 + (u + iv)

(
3a30 + 3ib30 + 4p(u + iv)

))
,

φ2 = −ib01 + b10 − i(u + iv)
(
b11 + 2ib20 + (u + iv)

(
3a30 + 3ib30 + 4p(u + iv)

))
,

φ3 = −ic01 + c10 +
(−ic11 + 2c20 + 3(ic03 + c30)(u + iv)

)
(u + iv).
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On the other hand the Weierstrass formula implies easily

f (z) = φ1 − iφ2, g(z) =
φ3

φ1 − iφ2

.

Hence we derive

f (z) = −ia01 − b01 + a10 − ib10 + (−ia11 − b11 + 2a20 − 2ib20)z,

g(z) =
c01 + ic10 + (c11 + 2ic20 + 3(−c03 + ic30)z)z

a01 − ib01 + ia10 + b10 + (a11 − ib11 + 2ia20 + 2b20)z
·

Consequently we have obtained that for some complex constants A and B

f (z) = Az + B, g(z) =
P2(z)

Az + B
,

where P2(z) is a polynomial of degree at most 2. Suppose A = 0, i.e., f (z) is a constant. Then the derivative

(φ1, φ2, φ3) =

(
1

2
f (z)(1 − g2(z)),

i
2

f (z)(1 + g2(z), f (z)g(z)

)

is of degree 2 or 4, so the chart x(u, v) is of degree 3 or 5, which is not our case. So A � 0. Since φ1 =
1
2

f (z)(1− g2(z))
is a polynomial then Az + B divides P2(z). Hence g(z) = Cz + D, where C � 0. We have proved the following

Theorem 1 Any bi-quartic parametric polynomial minimal surface in isothermal parameters is generated by the
Weierstrass formula with the functions

f (z) = Az + B, g(z) = Cz + D, where A � 0, C � 0.

Further, we are interested which of the functions in Theorem 1 generate different surfaces. Denote by x0(u, v) the
chart defined as the real part of the Weierstrass minimal curve with functions f (z) = z, g(z) = z and the corresponding
surface by S 0. Denote also by x(u, v) the chart with generating functions f (z) = Az, g(z) = Cz for arbitrary nonzero
complex numbers A, C, and the corresponding surface by S . Using (2) and (3) we can see that the nonzero coefficients
of the first fundamental form and the normal curvature of x0(u, v) are respectively

E0 = G0 =
1

4
(u2 + v2)(1 + u2 + v2)2, and hence ν0 =

4√
u2 + v2(1 + u2 + v2)2

·

Obviously x0(u, v) is not in canonical principal parameters. We want to change the parameters (u, v) to canonical
principal ones. Equation (6) has a solution

z = (3/2)2/3(i w)2/3.

So according to Theorem B we change the variable z by (3/2)2/3(i z)2/3. Now the functions

f̃ (z) = i
(

3

2

)1/3

(i z)1/3, g̃(z) =

(
3

2

)2/3

(i z)2/3

generate a chart x̃0(u, v) in canonical principal parameters and

ν̃0 =
4
(

2
3

)2/3

(u2 + v2)1/3

(
1 +

(
3
2

)4/3
(u2 + v2)2/3

)2
·

Analogously x(u, v) is not in canonical principal parameters. Using again Theorem B and changing the complex
variable z by (

3

2

)2/3 (
i z√
A
√

C

)2/3
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we obtain a corresponding chart x̃(u, v) in canonical principal parameters. According to (3) its normal curvature is

ν̃ =
4
(

2
3

)2/3 ( |C|2
|A|

)2/3

(u2 + v2)1/3

(
1 +

(
3
2

)4/3 ( |C|2
|A|

)2/3
(u2 + v2)2/3

)2
·

The last formula implies that this is also the normal curvature (in canonical principal parameters) of the surface S 1

generating via the Weierstrass formula by the functions

f1(z) =
|A|
|C|2 z, g1(z) = z.

According to Theorem A the surfaces S and S 1 coincide up to position in the space. On the other hand, the Weierstrass
formula implies that the surfaces S 0 and S 1 are homothetic. So for any nonzero complex numbers A, B the surface
S is, up to position in the space, homothetic to S 0. Surfaces of type S for different values of A and C are shown in
Figure 1.

Generating functions f (z) = 10z, g(z) = z Generating functions f (z) = z, g(z) = 10z

FIGURE 1. Surfaces of type S for different values of A and C

Now we are interested whether the functions f (z) = z, g(z) = z+ a+ i b, a, b ∈ R, define a surface which is really
different from S 0. The chart x(u, v) generated by these functions is not in canonical principal parameters so according
to Theorem B we change the complex variable z by (3/2)2/3(i z)2/3. Then the functions

f̃ (z) = i
(

3

2

)1/3

(i z)1/3, g̃(z) =

(
3

2

)2/3

(i z)2/3 + a + i b

define a chart x̃(u, v) in canonical principal parameters. Its normal curvature is

ν̃ =
4
(

2
3

)2/3

√
u2 + v2(1 + B(u, v)B(u, v))2

,

where B(u, v) is

B(u, v) = a + i b +
(

3

2

)2/3

(i u − v)2/3.

Comparing these functions for different values of (a, b) we can say that the resulting surfaces are different. In Figure 2
are shown parts of the surface S 0, obtained for (a, b) = (0, 0) (left), the surface obtained for (a, b) = (0.5, 0) (center),
and the surface obtained for (a, b) = (1, 0) (right).
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f (z) = z, g(z) = z f (z) = z, g(z) = z + 1/2 f (z) = z, g(z) = z + 1

FIGURE 2. Comparison of bi-quartic minimal surfaces for generating functions f (z) = z and g(z) = z + a + i b

5 BI-QUARTIC HARMONIC BÉZIER SURFACES

We consider bi-quartic tensor product Bézier surface defined by

x(u, v) =

4∑
i=0

4∑
j=0

bi jB4
i (u)B4

j (v), (10)

where bi j, i, j = 0, . . . , 4 are the control points of x(u, v), and B4
i (u) are the Bernstein polynomials of degree 4 defined

for 0 ≤ u ≤ 1 by

B4
i (u) :=

(
4

i

)
ui(1 − u)4−i,

(
4

i

)
=

⎧⎪⎪⎨⎪⎪⎩
4!

i!(4−i)! , for i = 0, . . . , 4,

0, otherwise.

Recall that if x(u, v) is in isothermal parameters then x(u, v) is a minimal surface if and only if x(u, v) is a harmonic
surface, i.e., Δx = 0. For a harmonic Bézier surface Monterde [5] has proved that if we know the control points on two
opposite boundaries except one corner point, e.g., nine points {b0 j}4j=0 and {bi4}3i=0

, then the remaining sixteen control

points are fully determined. The proof1 is based on the harmonic condition Δx = 0 which leads to a linear system that
has a unique solution. Here we assume that nine control points {bi0}4i=0, {bi4}4i=0;i�2 as shown on Figure 3 are given.

b40 ◦ ◦ ◦ b44

b30 ◦ ◦ ◦ b34

b20 ◦ ◦ ◦ ◦
b10 ◦ ◦ ◦ b14

b00 ◦ ◦ ◦ b04

FIGURE 3. Input control points that fully determine bi-quartic harmonic Bézier surface

Note that they differ from those used in [5]. In Lemma 1 below we give expressions for the remaining control points
through the given points. Then in Proposition 1 we prove that in the case where the given points are symmetric with
respect to any of the coordinate planes, then the corresponding harmonic Bézier surface is symmetric with respect to
the same coordinate plane.

Lemma 1 Let nine control points bi0, i = 0, . . . , 4; bi4, i = 0, 1, 3, 4 be given. A bi-quartic Bézier surface (10) is
harmonic if and only if the remaining sixteen control points satisfy

1Monterde’s proof is made for a surface of degree (n, n), where n ∈ N is even. Here we consider the case n = 4.
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b01 = (25b00 + 8b04 − 40b10 − 8b14 + 36b20 − 16b30 + 4b34 + 4b40 − b44)/12
b41 = (4b00 − b04 − 16b10 + 4b14 + 36b20 − 40b30 − 8b34 + 25b40 + 8b44)/12
b11 = (17b00 + 7b04 − 14b10 − 4b14 + 18b20 − 8b30 + 2b34 + 5b40 + b44)/24
b31 = (5b00 + b04 − 8b10 + 2b14 + 18b20 − 14b30 − 4b34 + 17b40 + 7b44)/24
b02 = (13b00 + 8b04 − 28b10 − 8b14 + 30b20 − 16b30 + 4b34 + 4b40 − b44)/6
b42 = (4b00 − b04 − 16b10 + 4b14 + 30b20 − 28b30 − 8b34 + 13b40 + 8b44)/6
b12 = (11b00 + 7b04 − 20b10 − 4b14 + 24b20 − 14b30 + 2b34 + 5b40 + b44)/12
b32 = (5b00 + b04 − 14b10 + 2b14 + 24b20 − 20b30 − 4b34 + 11b40 + 7b44)/12
b03 = (14b00 + 19b04 − 32b10 − 16b14 + 36b20 − 20b30 + 8b34 + 5b40 − 2b44)/12
b43 = (5b00 − 2b04 − 20b10 + 8b14 + 36b20 − 32b30 − 16b34 + 14b40 + 19b44)/12
b13 = (5b00 + 7b04 − 8b10 − b14 + 9b20 − 5b30 + 2b34 + 2b40 + b44)/12
b33 = (2b00 + b04 − 5b10 − 2b14 + 9b20 − 8b30 − b34 + 5b40 + 7b44)/12
b21 = (3b00 + b04 − 4b10 + 8b20 − 4b30 + 3b40 + b44)/8
b22 = (7b00 + 3b04 − 16b10 + 24b20 − 16b30 + 7b40 + 3b44)/12
b23 = (7b00 + 5b04 − 16b10 + 4b14 + 24b20 − 16b30 + 4b34 + 7b40 + 5b44)/24
b24 = (b00 − b04 − 4b10 + 4b14 + 6b20 − 4b30 + 4b34 + b40 − b44)/6.

(11)

Proof. It follows straightforward using the corresponding linear system from [5]. �
Proposition 1 Let the given points bi0, i = 0, . . . , 4; bi4, i = 0, 1, 3, 4 be symmetric with respect to some of
the coordinate planes Oxy, Oxz, or Oyz. Then the corresponding harmonic Bézier surface defined by Lemma 1 is
symmetric with respect to the same plane.

Proof. Let bi j = bi j(xi j, yi j, zi j) and assume that the given control points are symmetric with respect to the plane Oxy,
i.e., b0k and b1k are symmetric points to b4k and b3k, respectively, k = 0, 4, and b20 lies on Oxy. Then we have

x0k = x4k, x1k = x3k, y0k = y4k, y1k = y3k, z0k = −z4k, z1k = −z3k (12)

for k = 0, 4, and z20 = 0. To show that the harmonic Bézier surface defined by Lemma 1 is symmetric with respect
to Oxy it suffices to establish that its control points are symmetric with respect to Oxy. We need to establish that (12)
holds for k = 1, 2, 3 and z2 j = 0 for j = 1, . . . , 4. Next we verify that x01 = x41, y01 = y41, z01 = −z41, and z21 = 0. The
analogous relations for the remaining control points follow in a similar way.

From (11) and (12) we have

x01 = (25x00 + 8x04 − 40x10 − 8x14 + 36x20 − 16x30 + 4x34 + 4x40 − x44)/12
= (29x00 + 7x04 − 56x10 − 4x14 + 36x20)/12 = x41.

Analogous relation holds for y01 and y41. For the third coordinates z01 and z41 we obtain

z01 = (21z00 + 9z04 − 24z10 − 12z14)/12 = −z41.

It remains to show that z21 = 0. We have

z21 = (3z00 + z04 − 4z10 + 8z20 − 4z30 + 3z40 + z44)/8 =
(
3(z00 + z40) + (z04 + z44) − 4(z10 + z30) + 8z20

)
/8 = 0.

The case where the nine given points are symmetric with respect to the other coordinate planes is treated analogously.
�

A bi-quartic harmonic Bézier surface which is symmetric with respect to Oxz is shown from two different view-
points in Figure 4. Its control points are presented in Table 1. We note that they are obtained from the minimal
bi-quartic Bézier surface with generating functions f (z) = z, g(z) = z − 1. Hence, the surface in Figure 4 is harmonic
minimal Bézier surface.

6 CONCLUSIONS AND FUTURE WORK

In this paper we characterize all bi-quartic parametric polynomial minimal surfaces by their generating functions
using the Weierstrass formula. We also consider the bi-quartic harmonic Bézier surfaces and establish their symme-
try with respect to any of the coordinate planes. We present numerical experiments and give examples. A possible
direction for future work is to extend our results for minimal surfaces of higher degrees.
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TABLE 1. Control points of a harmonic bi-quartic Bézier surface that are symmetric with respect to Oxz
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FIGURE 4. Symmetry of a harmonic bi-quartic Bézier surface with respect to Oxz. The surface is shown from two different

viewpoints.
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[1] C. Cosı́n, and J. Monterde, Bézier surfaces of minimal area, in Proc. Int. Conf. of Comput. Sci. ICCS 2002,
LNCS 2330, Springer, Berlin Heidelberg, 2002, 72–81.

[2] G. Ganchev, Canonical Weierstrass representation of minimal surfaces in Euclidean space, arXiv:0802.2374,
2008.

[3] A. Gray, E. Abbena, and S. Salomon, Modern Differential Geometry of Curves and Surfaces with MATHE-
MATICA, CRC Press, Boca Raton, 2006.

[4] O. Kassabov (2014) Computer Aided Geometric Design 31(6), 441–450.
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