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A Comparison of Surface Subdivision Algorithms for
Polygonal Meshes

K. Vlachkova and P. Terziev

Faculty of Mathematics and Informatics, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd.,
1164 Sofia, Bulgaria

Abstract. We present a new program package for interactive implementation and 3D visualization of three fundamental algo-
rithms for surface subdivision. Namely, these are Doo-Sabin algorithm, Catmull-Clark algorithm, and Peters-Reif algorithm.
Our work and contributions are in the field of experimental algorithmics and algorithm engineering. We have chosen OpenGL
and Qt graphics libraries as our main implementation and visualization tools. Our program analyzes the validity of the loaded
mesh and proceeds with valid meshes only. We provide a user friendly interface so that users can load their own data sets. The
latter allows wide testing and comparing the results from the implementation of the three algorithms on arbitrary polygonal
meshes. The program has also an option for creating new polygonal meshes. We experimented extensively with our package.
We compared the behaviour of the three algorithms based on different criteria and using meshes of increasing complexity.
The experimental results are presented and analyzed.
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INTRODUCTION

Subdivision algorithms are one of the most successful modern techniques for modeling smooth free-form shapes, for
a detailed discussion see [1, 2, 3, 4]. They allow simple and efficient construction of smooth surfaces of arbitrary
topology starting from an initial polygonal control mesh. The algorithms subdivide the control mesh to form a new
refined mesh with more faces, edges, and vertices which is topologically equivalent to the original. A smooth surface
is obtained as a limit of a recursive process of subdivision. Because of their simplicity and efficiency, and the ability to
obtain high quality images, the subdivision algorithms have applications in various fields: Computer Aided Geometric
Design, computer graphics, solid modeling, computer game software, computer animation, aerospace and automotive
design, industrial design, architecture, medicine, etc. One of the promising applications is in solving problems that arise
in applied physics. For example, subdivision surfaces can be used in simulation of thin shells and plates, see [5, 6, 7].
Another important application is in computer animation. A number of commercial 3D animation software packages use
subdivision for surface modeling including Autodesk Maya, Pixar’s RenderMan and Marionette, NewTek’s LightWave
3D, and others.

In this paper we study three of the most popular and used in industry subdivision algorithms that work with arbitrary
polygonal meshes: Doo-Sabin algorithm [8], Catmull-Clark algorithm [9], and Peters-Reif algorithm [10]. The main
contributions of our work can be summarized as follows:

• We implemented a new software package for interactive visualization, manipulation and comparison of the
subdivision surfaces generated by these three algorithms. The package is user friendly and has a large number of
features that allow easy testing and experimenting.

• We tested the package and implemented extensive experimentation. The results were analyzed to reveal main
differences between the tested algorithms with respect to different criteria including quality, performance, and
efficiency.

• We made our package public so that it can be used for educational purposes.

The paper is organized as follows. Section 2 gives a brief description of the three algorithms. In Section 3 we provide
detailed information about the main features of the package. In Section 4 we present the results from our experimental
work and the comparison between the algorithms.
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(a) The subdivision rules: (a) F-faces; (b) E-faces; (c) V-faces (b) The mesh after 3 subdivision steps

FIGURE 1. Doo-Sabin subdivision for a cube as a control mesh

MATHEMATICAL BACKGROUND

A polygonal mesh consists of a set of vertices, edges, faces and topological relations between them. A subdivision
scheme is defined by a set of rules for mesh refinement. Below we present briefly the subdivision rules for Doo-Sabin,
Catmull-Clark, and Peters-Reif algorithms. Detailed information about the history and development of the subdivision
algorithms can be found, e.g., in [1].

Doo-Sabin subdivision

Doo-Sabin algorithm is proposed by D. Doo and M. Sabin in 1978. This algorithm is a generalization of the
Chaikin’s corner cutting subdivision algorithm which produces uniform C1-quadratic B-spline curves in the limit. For
regular control meshes - all faces are quadrilaterals, Doo-Sabin subdivision algorithm generates uniform quadratic
B-spline surfaces. For irregular closed polygonal meshes of arbitrary topology the algorithm works as follows:

1. For each face with vertices vi, i = 1, . . .n, where n ∈ N is the number of all vertices defining the face, the new
vertices v1

i , i = 1, . . .n are computed as an affine combination of the original vertices,

v1
i =

n

∑
j=1

ai jv j, where ai j =

{
n+5
4n for i = j
1

4n

(
3+2cos 2π(i− j)

n

)
otherwise.

2. New faces are constructed by the following rules (see Fig. 1a):
(a) F-faces are generated by connecting consecutively v1

1,v
1
2, . . . ,v

1
n for every face of the control mesh. The new

mesh and the control mesh have equal number of the vertices.
(b) E-faces are generated using two neighbor faces sharing a common edge. The E-faces are always quadrilat-

erals.
(c) V-faces are generated using the E-faces of all edges that start from a common vertex. The number of the new

faces is equal to the degree of the corresponding vertex., i.e., the number of the edges that start from this
vertex.

The generated limit surface is C1-continuous. Figure 1 shows an example of Doo-Sabin algorithm’s work on a cube
as a control mesh.
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(a) The subdivision rules for generating two types of new faces (b) The mesh after 3 subdivision steps

FIGURE 2. Catmull-Clark subdivision for a cube as a control mesh

Catmull-Clark subdivision

Catmull-Clark algorithm is proposed by E. Catmull and J. Clark in 1978 and is a generalization of the uniform
C2-cubic B-spline curves. For regular control meshes, Catmull-Clark subdivision algorithm generates uniform cubic
B-spline surfaces. For irregular closed polygonal meshes of arbitrary topology the algorithm works as follows (see
Fig. 2a):

1. Compute the f-point for each face. This is the centroid of the face, i.e., the average of all vertices defining the
face.

2. Compute the e-point for each edge. This is the average of the two endpoints of the edge and the two f-points of
the faces sharing the edge.

3. Compute the v-point v1 for each vertex v as follows:

v1 =
1
n

Q+
2
n

R+
n−3

n
v,

where Q is the average of the f-points of all faces surrounding v, R is the average of the midpoints of all edges
with endpoint v, and n is the degree of v.

4. The new faces are generated. The vertices of each new face form a sequence of the following type

v1 → e1
1 → f 1 → e1

2 → v1,

where the e-points e1
1 and e1

2 refer to the two neighboring edges with endpoint v1, which belong to the face with
f-point f 1 (see Fig. 2a). Note that all faces after the first subdivision level are quadrilaterals.

Figure 2 shows an example of Catmull-Clark algorithm’s work on a cube as a control mesh. The generated limit
surface is C2-continuous except at extraordinary points - of degree that differs from 4. At such points the limit surface
is only C1-continuous.

Peters-Reif subdivision

Peters-Reif algorithm is proposed in 1997 by J. Peters and U. Reif who called it “the simplest scheme” because of its
extremely simple subdivision rules. For any control mesh, in the limit the algorithm produces regular planar polygons.
They are tangent planes to the limit surface which is C1-continuous. The algorithm works as follows:

1. Compute the new vertices. These are the midpoints of all edges.
2. Form the new faces. They are of two types (see Figure 3a):

(a) Face inscribed to an old face. Its vertices are the midpoints of the edges of the old face.
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(a) The subdivision rules for generating new faces (b) The mesh after 3 subdivision steps

FIGURE 3. Peters-Reif subdivision for a cube as a control mesh

A mesh that looks closed... ...but in fact is not: it has coincident vertices.

FIGURE 4. An invalid mesh that looks closed

(b) Face formed by the midpoints of the edges that are incident to a fixed vertex.

Figure 3 shows an example of Peters-Reif algorithm’s work on a cube as a control mesh.

DESCRIPTION OF THE PACKAGE

We implemented a program package for interactive 3D visualization and comparison of the three considered algo-
rithms. Our main purpose was to visualize, compare, and analyze the behavior of Doo-Sabin, Catmull-Clark, and
Peters-Reif subdivision algorithms for different closed polygonal meshes of arbitrary topology. In addition the pack-
age was used for evaluation of the efficiency of the three algorithms.

The program uses the multiplatform graphics libraries OpenGL [11, 12] and Qt [13] as our main implementation
and visualization tools. OpenGL is probably the most used in industry application programming interface for computer
graphics. This is due to its wide accessibility and compatibility with different operating systems and computer
platforms.

The user interface is intuitive and allows changing of the main visualization elements as lighting, shading, coloring,
etc. The main features of our package are:

• The control mesh can be chosen either from a drop-down list, or can be loaded from an external file. Most of the
polygonal meshes on the list are downloaded from the Internet site [14].

• The level of subdivison can be controlled. Moreover, after the initial mesh is chosen, a dialog window showing
the required memory allocations appears so that the user can estimate apriori the maximum subdivision level.

• The program analyzes the loaded mesh for correctness and proceeds with a valid mesh only. Otherwise the
incorrect vertices are marked in red. Note that a mesh that is not closed is recognized as invalid. An example of
invalid mesh is shown in Figure 4.
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Solid and Flat Wireframe Solid with wireframe Solid and Smooth

FIGURE 5. The different visualization modes

TABLE 1. Comparison of Doo-Sabin, Catmull-Clark, and Peters-
Reif subdivision algorithms using different criteria.

Criterion Doo-Sabin Catmull-Clark Peters-Reif
Stationary scheme yes yes yes
Approximating scheme yes yes yes
Primal (face split) no yes no
Dual (vertex split) yes no yes
Smoothness C1 C2 C1

Number of vertices, edges, and faces for a mesh of genus g
Initial number After one step

v (vertices) 2e 2e+2-2g e
e (edges) 4e 4e 2e
f (faces) 2e+2-2g 2e e+2-2g

• The program visualizes the meshes in three modes: Solid, Wireframe, and Solid with wireframe, with options
for visual adjustments of the color, points size and mesh thickness. Wireframe mode is more convenient to
demonstrate and analyze the subdivision process while Solid and Solid with wireframe modes are appropriate
to study and compare the shape and the smoothness of the obtained surfaces. Solid and Solid with wireframe have
also an additional option for a choice between two light types: Flat and Smooth, see Figure 5.

• The surfaces can be edited interactively by rotation, translation and resizing using the mouse with option for
synchronizing the transformations between different views.

• The mesh can be visualized using one, two or all three algorithms simultaneously on the screen with an option
for showing the next step vertices, edges, and faces which allow better visual comparison of the results.

• The current mesh can be exported as a file. This option, together with the interactivity of the vertices, can be used
to create new meshes. For example, we can apply first Doo-Sabin algorithm, then move some of the vertices, and
then apply Catmull-Clark algorithm.

The package is available and can be downloaded at the Internet address http://www.fmi.uni-sofia.bg/
fmi/companal/krassivl/Plamen_Terziev/Subdivision.zip.

EXPERIMENTAL WORK AND COMPARISON OF THE ALGORITHMS

We compared the behaviour of Doo-Sabin, Catmull-Clark, and Peters-Reif subdivision algorithms using different
criteria. The results are presented in Table 1. Below we discuss our observations and conclusions with respect to each
of the criteria.

Type of subdivision rules: primal (face split) or dual (vertex split). All three algorithms are based on stationary
subdivision schemes, i.e., the subdivision rules do not change during the subdivision process. The algorithms differ
according to which elements of the mesh are split. With the face split rule at each subdivision step a new edge point is
added for every edge and every old face is subdivided to new faces of the same type. With the vertex split rule at each
step every vertex is replaced by a new face. Subdivision schemes using the face split rule are primal, while schemes
using the vertex split rule are dual. Catmull-Clark algorithm is of a primal type (face split). Doo-Sabin and Peters-Reif
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Control mesh tetrahedron Doo-Sabin Catmull-Clark Peters-Reif

FIGURE 6. Control mesh tetrahedron after 5 subdivision steps

Control mesh epcot Doo-Sabin Catmull-Clark Peters-Reif

FIGURE 7. Control mesh epcot after 5 subdivision steps

algorithms are of a dual type (vertex split). Note that the mesh generated after one step of Doo-Sabin algorithm is dual
of the mesh generated after one step of Catmull-Clark algorithm.

Interpolating or approximating scheme. The scheme is interpolating if the limit surface passes through the initial
control points. Otherwise the scheme is approximating. Doo-Sabin, Catmull-Clark, and Peters-Reif are approximating
schemes. The approximating surfaces shrink during the subdivision. The shrinkage effect is quite obvious in simple
models with small number of faces, e.g., tetrahedron or octahedron (see Figure 6). The approximating schemes produce
visually smooth, good looking surfaces and for this reason they are generally the preferable modeling tool in computer
animation. Even if the control mesh is dense and with many creases, the scheme has a tendency to smooth them out
(see Figure 7). A drawback of the approximating schemes is that the user can not foresee the shape of the limit surface
simply by looking at the control mesh.

Smoothness of the limit surface. The limit surfaces generated by Catmull-Clark subdivision are C2-continuous
everywhere except at the extraordinary points where they are C1-continuous. The limit surfaces generated using Doo-
Sabin and Peters-Reif subdivision are only C1-continuous. Hence Catmull-Clark algorithm generates surfaces that look
visually more pleasant than the surfaces generated with Doo-Sabin and Peters-Reif algorithms which often produce
unevenness and creases (see Figure 8). Moreover, the algorithms produce visually unpleasant surfaces if the mesh is
triangulated first. In Figure 9 are shown the surfaces generated after 5 subdivision steps of Catmull-Clark algorithm
applied on quad and triangulated model of digit 6, respectively.

Computational complexity. After one level of subdivision the number of the faces using Doo-Sabin and Catmull-
Clark algorithms increases approximately four times while using Peters-Reif algorithm the number of the faces
increases approximately twice. Hence one subdivision step of Peters-Reif algorithm is usually faster compared to
one step of Doo-Sabin and Catmull-Clark algorithms. On the other hand, Peters-Reif algorithm produces larger faces
and the refined mesh has a poorer quality.

Efficiency. Our experiments were performed on a Windows7 system with IntelCore i7-940 2.93-GHz processor (12-
GB RAM) and NVidia Quadro FX 3800 (16 GB RAM) GPU. The computational results of the surface approximation
for meshes of increasing complexity (tetrahedron, cube, star, and epcot) are presented in Table 2. The experiments
show that Peters-Reif algorithm is faster than Doo-Sabin and Catmull-Clark algorithms. Doo-Sabin and Catmull-Clark
have almost the same speed. Catmull-Clark is a little slower than Doo-Sabin. The difference in the speeds increases
with the increasing of the subdivision level and mesh complexity, see Table 2.
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Control mesh star Doo-Sabin Catmull-Clark Peters-Reif

FIGURE 8. Control mesh star after 5 subdivision steps

FIGURE 9. The algorithms produce visually unpleasant surfaces if the mesh is triangulated first: Catmull-Clark after 5 subdivi-
sion steps for quad and triangulated model of digit 6

TABLE 2. Comparison of the computational costs of Doo-Sabin,
Catmull-Clark, and Peters-Reif subdivision algorithms for meshes
of increasing complexity: tetrahedron, cube, star, and epcot.

Computational costs in ms
Subd. Doo- Catmull- Peters-

Control mesh level Sabin Clark Reif
1 0.01885 0.02100 0.01169
2 0.05648 0.05896 0.01770
3 0.15188 0.15724 0.02791
4 0.49387 0.49838 0.05173
5 2.05886 2.04334 0.088203

total 2.77994 2.77892 0.19724

1 0.03111 0.03408 0.01702
2 0.09275 0.09398 0.02908
3 0.26746 0.26491 0.05083
4 0.97538 1.00970 0.09060
5 4.16854 4.00928 0.14027

total 5.53523 5.41195 0.32779

1 0.21027 0.22752 0.11856
2 0.77094 0.76089 0.19251
3 3.09434 3.00573 0.35888
4 12.7053 12.0062 0.69687
5 67.9744 55.9502 1.42880

total 84.7553 71.95050 2.79561

1 3.07818 2.97268 1.44242
2 12.3815 11.9505 2.87408
3 65.7667 56.0691 5.53061
4 318.758 248.859 11.5932
5 1327.72 980.746 23.9201

total 1727.70 1300.60 45.3604
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CONCLUSIONS AND FUTURE WORK

In this paper we presented a program package for interactive implementation and 3D visualization of three fundamental
algorithms for surface subdivision: Doo-Sabin algorithm, Catmull-Clark algorithm, and Peters-Reif algorithm. The
package is made user friendly and possesses a wide range of features for experimenting with the three algorithms. We
performed a large number of experiments on meshes of increasing complexity and analyzed the results with respect
to different criteria. Given the importance of surface modeling and simulation techniques in practice, it is important
to better understand and engineer software packages based on different algorithms for surface manipulation. The
work presented here is an initial step in this direction. Our intention is to further enlarge the package by adding new
subdivision algorithms and new features to it. A challenging idea is to add an automatic mode to the package that
would be able to choose a particular algorithm or even a combination of algorithms depending on the user defined
criteria.
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